Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 73, Issue 4, Pages 545–555
DOI: https://doi.org/10.4213/mzm202
(Mi mzm202)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the Distance to the Closest Matrix with Triple Zero Eigenvalue

Kh. D. Ikramov, A. M. Nazari

M. V. Lomonosov Moscow State University
References:
Abstract: The 2-norm distance from a matrix $A$ to the set $\mathscr M$ of $(n\times n)$ matrices with a zero eigenvalue of multiplicity $\ge3$ is estimated. If
$$ Q(\gamma_1,\gamma_2,\gamma_3)=\begin{pmatrix} A&\gamma_1I_n&\gamma_3I_n \\0&A&\gamma_2I_n \\0&0&A \end{pmatrix}, \qquad n\ge3, $$
then
$$ \rho_2(A,\mathscr M) \ge\max_{\gamma_1,\gamma_2\ge0,\,\gamma_3\in\mathbb C} \sigma_{3n-2}(Q(\gamma_1,\gamma_2,\gamma_3)), $$
where $\sigma_i(\cdot)$ is the $i$th singular value of the corresponding matrix in the decreasing order of singular values. Moreover, if the maximum on the right-hand side is attained at the point $\gamma^*=(\gamma^*_1,\gamma^*_2,\gamma^*_3)$, where $\gamma^*_1\gamma^*_2\ne0$, then, in fact, one has the exact equality
$$ \rho_2(A,\mathscr M) =\sigma_{3n-2}(Q(\gamma^*_1,\gamma^*_2,\gamma^*_3)). $$
This result can be regarded as an extension of Malyshev's formula, which gives the 2-norm distance from $A$ to the set of matrices with a multiple zero eigenvalue.
Received: 20.05.2002
English version:
Mathematical Notes, 2003, Volume 73, Issue 4, Pages 511–520
DOI: https://doi.org/10.1023/A:1023255104040
Bibliographic databases:
UDC: 519.6
Language: Russian
Citation: Kh. D. Ikramov, A. M. Nazari, “On the Distance to the Closest Matrix with Triple Zero Eigenvalue”, Mat. Zametki, 73:4 (2003), 545–555; Math. Notes, 73:4 (2003), 511–520
Citation in format AMSBIB
\Bibitem{IkrNaz03}
\by Kh.~D.~Ikramov, A.~M.~Nazari
\paper On the Distance to the Closest Matrix with Triple Zero Eigenvalue
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 4
\pages 545--555
\mathnet{http://mi.mathnet.ru/mzm202}
\crossref{https://doi.org/10.4213/mzm202}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1991900}
\zmath{https://zbmath.org/?q=an:1059.15032}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 4
\pages 511--520
\crossref{https://doi.org/10.1023/A:1023255104040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182776700026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0346494427}
Linking options:
  • https://www.mathnet.ru/eng/mzm202
  • https://doi.org/10.4213/mzm202
  • https://www.mathnet.ru/eng/mzm/v73/i4/p545
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:545
    Full-text PDF :224
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024