Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 57, Issue 1, Pages 90–104 (Mi mzm1924)  

This article is cited in 10 scientific papers (total in 10 papers)

Lyapunov stability of equilibrium states of reversible systems

M. V. Matveev

Moscow Aviation Institute
References:
Received: 21.06.1994
English version:
Mathematical Notes, 1995, Volume 57, Issue 1, Pages 63–72
DOI: https://doi.org/10.1007/BF02309395
Bibliographic databases:
Language: Russian
Citation: M. V. Matveev, “Lyapunov stability of equilibrium states of reversible systems”, Mat. Zametki, 57:1 (1995), 90–104; Math. Notes, 57:1 (1995), 63–72
Citation in format AMSBIB
\Bibitem{Mat95}
\by M.~V.~Matveev
\paper Lyapunov stability of equilibrium states of reversible systems
\jour Mat. Zametki
\yr 1995
\vol 57
\issue 1
\pages 90--104
\mathnet{http://mi.mathnet.ru/mzm1924}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1339215}
\zmath{https://zbmath.org/?q=an:0840.34054}
\elib{https://elibrary.ru/item.asp?id=12750860}
\transl
\jour Math. Notes
\yr 1995
\vol 57
\issue 1
\pages 63--72
\crossref{https://doi.org/10.1007/BF02309395}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TA13700008}
Linking options:
  • https://www.mathnet.ru/eng/mzm1924
  • https://www.mathnet.ru/eng/mzm/v57/i1/p90
  • This publication is cited in the following 10 articles:
    1. V. V. Basov, Yu. N. Bibikov, “Normal Form and Stability of the Zero Solution to a Second-Order Periodic Reversible ODE with a Small Parameter”, Vestnik St.Petersb. Univ.Math., 57:4 (2024), 472  crossref
    2. A. Algaba, I. Checa, E. Gamero, C. García, “Characterizing Orbital-Reversibility Through Normal Forms”, Qual. Theory Dyn. Syst., 20:2 (2021)  crossref
    3. J. Chen, Y. X. Guo, F. X. Mei, “New methods to find solutions and analyze stability of equilibrium of nonholonomic mechanical systems”, Acta Mech. Sin., 34:6 (2018), 1136  crossref
    4. Antonio Algaba, Estanislao Gamero, Cristóbal García, “The reversibility problem for quasi-homogeneous dynamical systems”, DCDS-A, 33:8 (2013), 3225  crossref
    5. Valery V. Kozlov, Stanislav D. Furta, Springer Monographs in Mathematics, Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations, 2013, 169  crossref
    6. A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Stability of Steady Rotations in the Nonholonomic Routh Problem”, Regul. Chaotic Dyn., 13:4 (2008), 239–249  mathnet  crossref
    7. M. Matveyev, Hamiltonian Systems with Three or More Degrees of Freedom, 1999, 489  crossref
    8. Mikhail V. Matveyev, “Reversible systems with first integrals”, Physica D: Nonlinear Phenomena, 112:1-2 (1998), 148  crossref
    9. Jeroen S.W. Lamb, Matthew Nicol, “On symmetric attractors in reversible dynamical systems”, Physica D: Nonlinear Phenomena, 112:1-2 (1998), 281  crossref
    10. M.B. Sevryuk, “The finite-dimensional reversible KAM theory”, Physica D: Nonlinear Phenomena, 112:1-2 (1998), 132  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:638
    Full-text PDF :165
    References:59
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025