Citation:
M. V. Matveev, “Lyapunov stability of equilibrium states of reversible systems”, Mat. Zametki, 57:1 (1995), 90–104; Math. Notes, 57:1 (1995), 63–72
This publication is cited in the following 10 articles:
V. V. Basov, Yu. N. Bibikov, “Normal Form and Stability of the Zero Solution to a Second-Order Periodic Reversible ODE with a Small Parameter”, Vestnik St.Petersb. Univ.Math., 57:4 (2024), 472
A. Algaba, I. Checa, E. Gamero, C. García, “Characterizing Orbital-Reversibility Through Normal Forms”, Qual. Theory Dyn. Syst., 20:2 (2021)
J. Chen, Y. X. Guo, F. X. Mei, “New methods to find solutions and analyze stability of equilibrium of nonholonomic mechanical systems”, Acta Mech. Sin., 34:6 (2018), 1136
Antonio Algaba, Estanislao Gamero, Cristóbal García, “The reversibility problem for quasi-homogeneous dynamical systems”, DCDS-A, 33:8 (2013), 3225
Valery V. Kozlov, Stanislav D. Furta, Springer Monographs in Mathematics, Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations, 2013, 169
A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Stability of Steady Rotations in the Nonholonomic Routh Problem”, Regul. Chaotic Dyn., 13:4 (2008), 239–249
M. Matveyev, Hamiltonian Systems with Three or More Degrees of Freedom, 1999, 489
Mikhail V. Matveyev, “Reversible systems with first integrals”, Physica D: Nonlinear Phenomena, 112:1-2 (1998), 148
Jeroen S.W. Lamb, Matthew Nicol, “On symmetric attractors in reversible dynamical systems”, Physica D: Nonlinear Phenomena, 112:1-2 (1998), 281
M.B. Sevryuk, “The finite-dimensional reversible KAM theory”, Physica D: Nonlinear Phenomena, 112:1-2 (1998), 132