|
Universal $n$-soft maps of $n$-dimensional spaces in absolute Borel and projective classes
M. M. Zarichnyi Ivan Franko National University of L'viv
Abstract:
Let $\mathscr C$ be one of the absolute Borel classes ${\mathscr M}_\alpha$, ${\mathscr A}_\alpha$, $1\le\alpha<\omega_1$ or one of the absolute projective classes ${\mathscr P}_k$, $k\ge1$. A map of an $n$-dimensional space $X\in\mathscr C$ onto the Hilbert cube which is an $n$-soft map in Shchepin's sense and universal in the class of maps of spaces of dimension smaller that or equal to $n$ from the class $\mathscr C$ into separable metrizable spaces is constructed.
Received: 01.06.1994
Citation:
M. M. Zarichnyi, “Universal $n$-soft maps of $n$-dimensional spaces in absolute Borel and projective classes”, Mat. Zametki, 60:6 (1996), 845–850; Math. Notes, 60:6 (1996), 638–641
Linking options:
https://www.mathnet.ru/eng/mzm1902https://doi.org/10.4213/mzm1902 https://www.mathnet.ru/eng/mzm/v60/i6/p845
|
|