Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 60, Issue 5, Pages 643–657
DOI: https://doi.org/10.4213/mzm1878
(Mi mzm1878)
 

This article is cited in 9 scientific papers (total in 9 papers)

Antiproximinal sets in spaces of continuous functions

V. S. Balaganskii

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (242 kB) Citations (9)
References:
Abstract: Closed convex bounded antiproximinal bodies are constructed in the infinite-dimensional spaces C(Q)C(Q), C0(T)C0(T), L(S,Σ,μ)L(S,Σ,μ) and B(S)B(S), where QQ is a topological space and TT is a locally compact Hausdorff space. It is shown that there are no closed bounded antiproximinal sets in Banach spaces with the Radon–Nikodym property.
Received: 20.02.1995
English version:
Mathematical Notes, 1996, Volume 60, Issue 5, Pages 485–494
DOI: https://doi.org/10.1007/BF02309162
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. S. Balaganskii, “Antiproximinal sets in spaces of continuous functions”, Mat. Zametki, 60:5 (1996), 643–657; Math. Notes, 60:5 (1996), 485–494
Citation in format AMSBIB
\Bibitem{Bal96}
\by V.~S.~Balaganskii
\paper Antiproximinal sets in spaces of continuous functions
\jour Mat. Zametki
\yr 1996
\vol 60
\issue 5
\pages 643--657
\mathnet{http://mi.mathnet.ru/mzm1878}
\crossref{https://doi.org/10.4213/mzm1878}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619881}
\zmath{https://zbmath.org/?q=an:0897.46012}
\transl
\jour Math. Notes
\yr 1996
\vol 60
\issue 5
\pages 485--494
\crossref{https://doi.org/10.1007/BF02309162}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WZ03000001}
Linking options:
  • https://www.mathnet.ru/eng/mzm1878
  • https://doi.org/10.4213/mzm1878
  • https://www.mathnet.ru/eng/mzm/v60/i5/p643
  • This publication is cited in the following 9 articles:
    1. B. B. Bednov, “The nn-antiproximinal sets”, Moscow University Mathematics Bulletin, 70:3 (2015), 130–135  mathnet  crossref  mathscinet  isi
    2. V. S. Balaganskii, “Ob antiproksiminalnykh mnozhestvakh v prostranstve Grotendika”, Tr. IMM UrO RAN, 18, no. 4, 2012, 90–103  mathnet  elib
    3. V. S. Balaganskii, “On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 48–54  mathnet  crossref  isi  elib
    4. V. S. Balaganskii, “On Antiproximal Closed Radially Bounded Convex Sets in the l1l1-Space”, Math. Notes, 84:5 (2008), 729–732  mathnet  crossref  crossref  mathscinet  isi
    5. V. S. Balaganskii, “Antiproximinal convex bounded sets in the space c0(Γ)c0(Γ) equipped with the day norm”, Math. Notes, 79:3 (2006), 299–313  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. Borwein, JM, “Antiproximinal norms in Banach spaces”, Journal of Approximation Theory, 114:1 (2002), 57  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Cobzas, S, “Antiproximinal sets in Banach spaces of continuous vector-valued functions”, Journal of Mathematical Analysis and Applications, 261:2 (2001), 527  crossref  mathscinet  zmath  isi  scopus  scopus
    8. V. S. Balaganskii, “Smooth antiproximinal sets”, Math. Notes, 63:3 (1998), 415–418  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. V. S. Balaganskii, “On nearest and furthest points”, Math. Notes, 63:2 (1998), 250–252  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:501
    Full-text PDF :230
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025