Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 60, Issue 4, Pages 569–586
DOI: https://doi.org/10.4213/mzm1863
(Mi mzm1863)
 

This article is cited in 2 scientific papers (total in 2 papers)

Convergence of the Vallée–Poussin means for Fourier–Jacobi sums

I. I. Sharapudinov, I. A. Vagabov
Full-text PDF (205 kB) Citations (2)
References:
Abstract: Let $f\in C[-1,1]$, $-1<\alpha$, $\beta\le0$, $S_n^{\alpha,\beta}(f,x)$ be a partial Fourier–Jacobi sum of order $n$, and let
$$ \begin{aligned} {\mathscr V}_{m,n}^{\alpha,\beta} & ={\mathscr V}_{m,n}^{\alpha,\beta}(f) ={\mathscr V}_{m,n}^{\alpha,\beta}(f,x) \& =\frac 1{n+1}\bigl[S_m^{\alpha,\beta}(f,x)+\dots+S_{m+n}^{\alpha,\beta}(f,x)\bigr] \end{aligned} $$
be the Vallée Poussin means for Fourier–Jacobi sums. It was proved that if $0<a\le m/n\le b$, then there exists a constant $c=c(\alpha,\beta,a,b)$ such that $\|{\mathscr V}_{m,n}^{\alpha,\beta}\|\le c$, where $\|{V}_{m,n}^{\alpha,\beta}\|$ is the norm of the operator ${\mathscr V}_{m,n}^{\alpha,\beta}$ in $C[-1,1]$.
Received: 06.07.1994
Revised: 12.03.1996
English version:
Mathematical Notes, 1996, Volume 60, Issue 4, Pages 425–437
DOI: https://doi.org/10.1007/BF02305425
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: I. I. Sharapudinov, I. A. Vagabov, “Convergence of the Vallée–Poussin means for Fourier–Jacobi sums”, Mat. Zametki, 60:4 (1996), 569–586; Math. Notes, 60:4 (1996), 425–437
Citation in format AMSBIB
\Bibitem{ShaVag96}
\by I.~I.~Sharapudinov, I.~A.~Vagabov
\paper Convergence of the Vall\'ee--Poussin means for Fourier--Jacobi sums
\jour Mat. Zametki
\yr 1996
\vol 60
\issue 4
\pages 569--586
\mathnet{http://mi.mathnet.ru/mzm1863}
\crossref{https://doi.org/10.4213/mzm1863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619447}
\zmath{https://zbmath.org/?q=an:0907.42018}
\transl
\jour Math. Notes
\yr 1996
\vol 60
\issue 4
\pages 425--437
\crossref{https://doi.org/10.1007/BF02305425}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WN90400031}
Linking options:
  • https://www.mathnet.ru/eng/mzm1863
  • https://doi.org/10.4213/mzm1863
  • https://www.mathnet.ru/eng/mzm/v60/i4/p569
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :227
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024