|
This article is cited in 2 scientific papers (total in 2 papers)
Convergence of the Vallée–Poussin means for Fourier–Jacobi sums
I. I. Sharapudinov, I. A. Vagabov
Abstract:
Let $f\in C[-1,1]$, $-1<\alpha$, $\beta\le0$, $S_n^{\alpha,\beta}(f,x)$ be a partial Fourier–Jacobi sum of order $n$, and let
$$
\begin{aligned}
{\mathscr V}_{m,n}^{\alpha,\beta} & ={\mathscr V}_{m,n}^{\alpha,\beta}(f)
={\mathscr V}_{m,n}^{\alpha,\beta}(f,x)
\& =\frac 1{n+1}\bigl[S_m^{\alpha,\beta}(f,x)+\dots+S_{m+n}^{\alpha,\beta}(f,x)\bigr]
\end{aligned}
$$
be the Vallée Poussin means for Fourier–Jacobi sums. It was proved that if $0<a\le m/n\le b$, then there exists a constant $c=c(\alpha,\beta,a,b)$ such that $\|{\mathscr V}_{m,n}^{\alpha,\beta}\|\le c$, where $\|{V}_{m,n}^{\alpha,\beta}\|$ is the norm of the operator ${\mathscr V}_{m,n}^{\alpha,\beta}$ in $C[-1,1]$.
Received: 06.07.1994 Revised: 12.03.1996
Citation:
I. I. Sharapudinov, I. A. Vagabov, “Convergence of the Vallée–Poussin means for Fourier–Jacobi sums”, Mat. Zametki, 60:4 (1996), 569–586; Math. Notes, 60:4 (1996), 425–437
Linking options:
https://www.mathnet.ru/eng/mzm1863https://doi.org/10.4213/mzm1863 https://www.mathnet.ru/eng/mzm/v60/i4/p569
|
Statistics & downloads: |
Abstract page: | 391 | Full-text PDF : | 225 | References: | 39 | First page: | 1 |
|