Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 60, Issue 4, Pages 556–568
DOI: https://doi.org/10.4213/mzm1862
(Mi mzm1862)
 

Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain

A. B. Shapoval

International Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS
References:
Abstract: We consider the solutions of the inequality $Lu\le\varphi(|{\operatorname{grad}u}|)$, where $L$ is a uniformly elliptic homogeneous operator and $\varphi$ is a function increasing faster than any linear function but not faster than $\xi\ln\xi$, in the unbounded domain
$$ \biggl\{x\in\mathbb R^n\biggm| \sum_{i=2}^nx_i^2<\bigl(\psi(x_1)\bigr)^2, -\infty<x_1<\infty\biggr\}, $$
where $\psi$ is a bounded function with bounded derivative. We estimate the growth of the solutions in terms of $\int_0^{x_1}\frac{dr}{\psi(r)}$. For the special case in which $\varphi(\xi)=a\xi\ln\xi+C$, the solutions $u(x_1,x_2,\dots,x_n)$ grow as $\bigl(\int_0^{x_1}\frac{dr}{\varphi(r)}\bigr)^N$, where $N$ is any given number and $a=a(N)$.
Received: 14.07.1994
English version:
Mathematical Notes, 1996, Volume 60, Issue 4, Pages 415–424
DOI: https://doi.org/10.1007/BF02305424
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. B. Shapoval, “Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain”, Mat. Zametki, 60:4 (1996), 556–568; Math. Notes, 60:4 (1996), 415–424
Citation in format AMSBIB
\Bibitem{Sha96}
\by A.~B.~Shapoval
\paper Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain
\jour Mat. Zametki
\yr 1996
\vol 60
\issue 4
\pages 556--568
\mathnet{http://mi.mathnet.ru/mzm1862}
\crossref{https://doi.org/10.4213/mzm1862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619443}
\zmath{https://zbmath.org/?q=an:0905.35016}
\transl
\jour Math. Notes
\yr 1996
\vol 60
\issue 4
\pages 415--424
\crossref{https://doi.org/10.1007/BF02305424}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WN90400030}
Linking options:
  • https://www.mathnet.ru/eng/mzm1862
  • https://doi.org/10.4213/mzm1862
  • https://www.mathnet.ru/eng/mzm/v60/i4/p556
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :163
    References:36
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024