|
This article is cited in 5 scientific papers (total in 5 papers)
Approximation error for linear polynomial interpolation on $n$-simplices
Yu. A. Kilizhekov
Abstract:
Let $W_n^2M$ be the class of functions $f\colon\Delta_n\to\mathbb R$ (when ($\Delta_n$ is an $n$-simplex) with bounded second derivative (whose absolute value does not exceed $M>0$) along any direction at an arbitrary point of the simplex $\Delta_n$. Let $P_{1,n}(f;x)$ be the linear polynomial interpolating $f$ at the vertices of the simplex. We prove that there exists a function $g\in W_n^2M$ such that for any $f\in W_n^2M$ and any $x\in\Delta_n$ one has
$$
|f(x)-P_{1,n}(f;x)|\leqslant g(x).
$$
Received: 19.04.1993
Citation:
Yu. A. Kilizhekov, “Approximation error for linear polynomial interpolation on $n$-simplices”, Mat. Zametki, 60:4 (1996), 504–510; Math. Notes, 60:4 (1996), 378–382
Linking options:
https://www.mathnet.ru/eng/mzm1858https://doi.org/10.4213/mzm1858 https://www.mathnet.ru/eng/mzm/v60/i4/p504
|
|