|
This article is cited in 23 scientific papers (total in 23 papers)
Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations
A. L. Gladkov Vitebsk State University named after P. M. Masherov
Abstract:
We study the Cauchy problem in the layer $\Pi_T={\mathbb R}^n\times[0,T]$ for the equation
$$
u_t=c\Delta u_t+\Delta\varphi(u),
$$
where $c$ is a positive constant and the function $\varphi(p)$ belongs to $C^1({\mathbb R}_+)$ and has a nonnegative monotone non-decreasing derivative. The unique solvability of this Cauchy problem is established for the class of nonnegative functions $u(x,t)\in C_{x,t}^{2,1}(\Pi_T)$ with the properties:
\begin{align*}
\varphi'\bigl(u(x,t)\bigr) &\le M_1(1+|x|^2),
\\
\|u_t(x,t)| & \le M_2(1+|x|^2)^\beta\qquad
(\beta >0).
\end{align*}
Received: 09.07.1993
Citation:
A. L. Gladkov, “Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations”, Mat. Zametki, 60:3 (1996), 356–362; Math. Notes, 60:3 (1996), 264–268
Linking options:
https://www.mathnet.ru/eng/mzm1835https://doi.org/10.4213/mzm1835 https://www.mathnet.ru/eng/mzm/v60/i3/p356
|
|