Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 60, Issue 3, Pages 333–355
DOI: https://doi.org/10.4213/mzm1834
(Mi mzm1834)
 

This article is cited in 18 scientific papers (total in 18 papers)

Sharp Jackson–Stechkin inequality in $L^2$ for multidimensional spheres

A. G. Babenko

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: In this paper we prove the Jackson–Stechkin inequality
$$ E_{n-1}(f)<\omega_r(f,2\tau_{n,\lambda}), \qquad n\ge1, \quad m\ge5, \quad r\ge1, $$
$f\in L^2(\mathbb S^{m-1})$, $f\not\equiv\textrm{const}$, which is sharp for each $n=2,3,\dots$; here $E_{n-1}(f)$ is the best approximation of a function $f$ by spherical polynomials of degree $\le n-1$, $\omega_r(f,\tau)$ is the $r$th modulus of continuity of $f$ based on the translations
$$ s_tf(x)=\frac 1{|\mathbb S^{m-2}|}\int_{\mathbb S^{m-2}}f(x\cos t+\xi\sin t)\,d\xi, \qquad t\in\mathbb R, \quad x\in\mathbb S^{m-1}, $$
$\mathbb S^{m-2}=\mathbb S^{m-2}_x=\bigl\{\xi\in \mathbb S^{m-1}:x\cdot\xi=0\bigr\}$, $|\mathbb S^{m-2}|$ is the measure of the unit Euclidean sphere $\mathbb S^{m-2}$, $\lambda=(m-2)/2$ and $\tau_{n,\lambda}$ is the first positive zero of the Gegenbauer cosine polynomial $C^\lambda_n(\cos t)$ .
Received: 04.04.1994
Revised: 18.06.1996
English version:
Mathematical Notes, 1996, Volume 60, Issue 3, Pages 248–263
DOI: https://doi.org/10.1007/BF02320361
Bibliographic databases:
UDC: 517.518.837
Language: Russian
Citation: A. G. Babenko, “Sharp Jackson–Stechkin inequality in $L^2$ for multidimensional spheres”, Mat. Zametki, 60:3 (1996), 333–355; Math. Notes, 60:3 (1996), 248–263
Citation in format AMSBIB
\Bibitem{Bab96}
\by A.~G.~Babenko
\paper Sharp Jackson--Stechkin inequality in $L^2$ for multidimensional spheres
\jour Mat. Zametki
\yr 1996
\vol 60
\issue 3
\pages 333--355
\mathnet{http://mi.mathnet.ru/mzm1834}
\crossref{https://doi.org/10.4213/mzm1834}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1428848}
\zmath{https://zbmath.org/?q=an:0903.41014}
\elib{https://elibrary.ru/item.asp?id=13238020}
\transl
\jour Math. Notes
\yr 1996
\vol 60
\issue 3
\pages 248--263
\crossref{https://doi.org/10.1007/BF02320361}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WN90400002}
Linking options:
  • https://www.mathnet.ru/eng/mzm1834
  • https://doi.org/10.4213/mzm1834
  • https://www.mathnet.ru/eng/mzm/v60/i3/p333
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:649
    Full-text PDF :255
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024