Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 60, Issue 1, Pages 75–91
DOI: https://doi.org/10.4213/mzm1805
(Mi mzm1805)
 

This article is cited in 10 scientific papers (total in 10 papers)

Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method

Yu. R. Romanovskii

Program Systems Institute of RAS
References:
Abstract: The Cartan equivalence method is used to find out if a given equation has a nontrivial Lie group of point symmetries. In particular, we compute invariants that permit one to recognize equations with a three-dimensional symmetry group. An effective method to transform the Lie system (the system of partial differential equations to be satisfied by the infinitesimal point symmetries) into a formally integrable form is given. For equations with a three-dimensional symmetry group, the formally integrable form of the Lie system is found explicitly.
Received: 09.04.1992
Revised: 05.03.1996
English version:
Mathematical Notes, 1996, Volume 60, Issue 1, Pages 56–67
DOI: https://doi.org/10.1007/BF02308880
Bibliographic databases:
UDC: 517
Language: Russian
Citation: Yu. R. Romanovskii, “Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method”, Mat. Zametki, 60:1 (1996), 75–91; Math. Notes, 60:1 (1996), 56–67
Citation in format AMSBIB
\Bibitem{Rom96}
\by Yu.~R.~Romanovskii
\paper Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method
\jour Mat. Zametki
\yr 1996
\vol 60
\issue 1
\pages 75--91
\mathnet{http://mi.mathnet.ru/mzm1805}
\crossref{https://doi.org/10.4213/mzm1805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1431461}
\zmath{https://zbmath.org/?q=an:0942.34032}
\transl
\jour Math. Notes
\yr 1996
\vol 60
\issue 1
\pages 56--67
\crossref{https://doi.org/10.1007/BF02308880}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WE97100008}
Linking options:
  • https://www.mathnet.ru/eng/mzm1805
  • https://doi.org/10.4213/mzm1805
  • https://www.mathnet.ru/eng/mzm/v60/i1/p75
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024