Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 60, Issue 1, Pages 75–91
DOI: https://doi.org/10.4213/mzm1805
(Mi mzm1805)
 

This article is cited in 10 scientific papers (total in 10 papers)

Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method

Yu. R. Romanovskii

Program Systems Institute of RAS
References:
Abstract: The Cartan equivalence method is used to find out if a given equation has a nontrivial Lie group of point symmetries. In particular, we compute invariants that permit one to recognize equations with a three-dimensional symmetry group. An effective method to transform the Lie system (the system of partial differential equations to be satisfied by the infinitesimal point symmetries) into a formally integrable form is given. For equations with a three-dimensional symmetry group, the formally integrable form of the Lie system is found explicitly.
Received: 09.04.1992
Revised: 05.03.1996
English version:
Mathematical Notes, 1996, Volume 60, Issue 1, Pages 56–67
DOI: https://doi.org/10.1007/BF02308880
Bibliographic databases:
UDC: 517
Language: Russian
Citation: Yu. R. Romanovskii, “Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method”, Mat. Zametki, 60:1 (1996), 75–91; Math. Notes, 60:1 (1996), 56–67
Citation in format AMSBIB
\Bibitem{Rom96}
\by Yu.~R.~Romanovskii
\paper Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method
\jour Mat. Zametki
\yr 1996
\vol 60
\issue 1
\pages 75--91
\mathnet{http://mi.mathnet.ru/mzm1805}
\crossref{https://doi.org/10.4213/mzm1805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1431461}
\zmath{https://zbmath.org/?q=an:0942.34032}
\transl
\jour Math. Notes
\yr 1996
\vol 60
\issue 1
\pages 56--67
\crossref{https://doi.org/10.1007/BF02308880}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WE97100008}
Linking options:
  • https://www.mathnet.ru/eng/mzm1805
  • https://doi.org/10.4213/mzm1805
  • https://www.mathnet.ru/eng/mzm/v60/i1/p75
  • This publication is cited in the following 10 articles:
    1. Maycol Falla Luza, Frank Loray, “Projective structures, neighborhoods of rational curves and Painlevé equations”, Mosc. Math. J., 23:1 (2023), 59–95  mathnet
    2. Gianni Manno, Jan Schumm, Andreas Vollmer, Contemporary Mathematics, 788, The Diverse World of PDEs, 2023, 193  crossref
    3. Vera V. Kartak, “Point classification of second order ODEs and its application to Painlevé equations”, JNMP, 20:Supplement 1 (2021), 110  crossref
    4. Manno G., Vollmer A., “Normal Forms of Two-Dimensional Metrics Admitting Exactly One Essential Projective Vector Field”, J. Math. Pures Appl., 135 (2020), 26–82  crossref  isi
    5. Lang J., “Finsler Metrics on Surfaces Admitting Three Projective Vector Fields”, Differ. Geom. Appl., 69 (2020), 101590  crossref  isi
    6. Dunajski M., Mettler T., “Gauge Theory on Projective Surfaces and Anti-Self-Dual Einstein Metrics in Dimension Four”, J. Geom. Anal., 28:3 (2018), 2780–2811  crossref  mathscinet  isi  scopus
    7. Bagderina Yu.Yu., “Invariants of a family of scalar second-order ordinary differential equations for Lie symmetries and first integrals”, J. Phys. A-Math. Theor., 49:15 (2016), 155202  crossref  mathscinet  zmath  isi  elib  scopus
    8. Kruglikov B., “Point Classification of Second Order ODEs: Tresse Classification Revisited and Beyond”, Differential Equations: Geometry, Symmetries and Integrability - the Abel Symposium 2008, Abel Symposia, 5, eds. Kruglikov B., Lychagin V., Straume E., Springer, 2009, 199–221  crossref  mathscinet  zmath  isi  scopus
    9. Bryant, RL, “A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields”, Mathematische Annalen, 340:2 (2008), 437  crossref  mathscinet  zmath  isi  elib  scopus
    10. R. A. Sharipov, “Newtonian normal shift in multidimensional Riemannian geometry”, Sb. Math., 192:6 (2001), 895–932  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :231
    References:76
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025