Abstract:
Let ΩΩ be an arbitrary, possibly unbounded, open subset of Rn, and let L be an elliptic operator of the form
L=n∑i,j=1∂∂xi(aij(x)∂∂xj).
The behavior at infinity of the solutions of the equation Lu=f(|u|)signu in Ω is studied, where f is a measurable function. In particular, given certain conditions at infinity, the uniqueness theorem for the solution of the first boundary value problem is proved.
Citation:
A. A. Kon'kov, “Behavior at infinity of solutions of second-order nonlinear equations of a particular class”, Mat. Zametki, 60:1 (1996), 30–39; Math. Notes, 60:1 (1996), 22–28
\Bibitem{Kon96}
\by A.~A.~Kon'kov
\paper Behavior at infinity of solutions of second-order nonlinear equations of a~particular class
\jour Mat. Zametki
\yr 1996
\vol 60
\issue 1
\pages 30--39
\mathnet{http://mi.mathnet.ru/mzm1801}
\crossref{https://doi.org/10.4213/mzm1801}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1431457}
\zmath{https://zbmath.org/?q=an:0898.35014}
\transl
\jour Math. Notes
\yr 1996
\vol 60
\issue 1
\pages 22--28
\crossref{https://doi.org/10.1007/BF02308876}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WE97100004}
Linking options:
https://www.mathnet.ru/eng/mzm1801
https://doi.org/10.4213/mzm1801
https://www.mathnet.ru/eng/mzm/v60/i1/p30
This publication is cited in the following 4 articles:
Sh. G. Bagyrov, “Nonexistence of Solutions of a Semilinear Biharmonic Equation with Singular Potential”, Math. Notes, 103:1 (2018), 24–32
Sh. G. Bagyrov, K. A. Gulieva, “Blow-Up of Positive Solutions of a Second-Order Semilinear Elliptic Equation with Lower Derivatives and with Singular Potential”, Math. Notes, 101:2 (2017), 374–378
Mamedov, FI, “On local and global properties of solutions of semilinear equations with principal part of the type of a degenerating p-Laplacian”, Differential Equations, 43:12 (2007), 1724
A. A. Kon'kov, “Behavior of Solutions of Quasilinear Elliptic Inequalities”, Journal of Mathematical Sciences, 134:3 (2006), 2073–2237