Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 6, Pages 865–880
DOI: https://doi.org/10.4213/mzm1785
(Mi mzm1785)
 

This article is cited in 52 scientific papers (total in 53 papers)

A few remarks on ζ(3)

Yu. V. Nesterenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A new proof of the irrationality of the number ζ(3) is proposed. A new decomposition of this number into a continued fraction is found. Recurrence relations are proved for some sequences of Meyer's G-functions that define a sequence of rational approximations to ζ(3) at the point 1.
Received: 29.11.1995
English version:
Mathematical Notes, 1996, Volume 59, Issue 6, Pages 625–636
DOI: https://doi.org/10.1007/BF02307212
Bibliographic databases:
UDC: 511.36
Language: Russian
Citation: Yu. V. Nesterenko, “A few remarks on ζ(3)”, Mat. Zametki, 59:6 (1996), 865–880; Math. Notes, 59:6 (1996), 625–636
Citation in format AMSBIB
\Bibitem{Nes96}
\by Yu.~V.~Nesterenko
\paper A~few remarks on $\zeta(3)$
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 6
\pages 865--880
\mathnet{http://mi.mathnet.ru/mzm1785}
\crossref{https://doi.org/10.4213/mzm1785}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445472}
\zmath{https://zbmath.org/?q=an:0888.11028}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 6
\pages 625--636
\crossref{https://doi.org/10.1007/BF02307212}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VM73200027}
Linking options:
  • https://www.mathnet.ru/eng/mzm1785
  • https://doi.org/10.4213/mzm1785
  • https://www.mathnet.ru/eng/mzm/v59/i6/p865
  • This publication is cited in the following 53 articles:
    1. Tanguy Rivoal, “Les E-fonctions et G-fonctions de Siegel”, Journées mathématiques X-UPS, 2024, 197  crossref
    2. Angelo B. Mingarelli, “Principal Solutions of Recurrence Relations and Irrationality Questions in Number Theory”, Mathematics, 11:2 (2023), 262  crossref
    3. Chen Ch.-P., “Asymptotic Results of the Remainders in the Series Representations For the Apery Constant”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116:1 (2022), 28  crossref  isi
    4. Noriko Hirata-Kohno, Hirata-Kohno Noriko, “Diophantine approximation”, Sugaku Expositions, 34:2 (2021), 205  crossref
    5. Marcovecchio R., Zudilin W., “Hypergeometric Rational Approximations to Zeta(4)”, Proc. Edinb. Math. Soc., 63:2 (2020), 374–397  crossref  isi
    6. Soria-Lorente A., Berres S., “A Single Parameter Hermite-Pade Series Representation For Apery'S Constant”, Notes Number Theory Discret. Math., 26:3 (2020), 107–134  crossref  isi
    7. Arvesu J., Soria-Lorente A., “On Infinitely Many Rational Approximants to Zeta(3)”, Mathematics, 7:12 (2019), 1176  crossref  isi
    8. Soria Lorente A., “On Zudilin-Like Rational Approximations to ? (5)”, Notes Number Theory Discret. Math., 24:2 (2018), 104–116  crossref  isi
    9. Osburn R., Straub A., Zudilin W., “A Modular Supercongruence For F-6(5): An Apery-Like Story”, Ann. Inst. Fourier, 68:5 (2018), 1987–2004  crossref  mathscinet  zmath  isi
    10. E. A. Karatsuba, “On One method for constructing a family of approximations of zeta constants by rational fractions”, Problems Inform. Transmission, 51:4 (2015), 378–390  mathnet  crossref  isi  elib
    11. M. Ram Murty, Purusottam Rath, Transcendental Numbers, 2014, 185  crossref
    12. M. Ram Murty, Purusottam Rath, Transcendental Numbers, 2014, 75  crossref
    13. Pilehrood Kh.H. Pilehrood T.H., “On a Continued Fraction Expansion for Euler's Constant”, J. Number Theory, 133:2 (2013), 769–786  crossref  mathscinet  zmath  isi  scopus  scopus
    14. Lagarias J.C., “Euler's Constant: Euler's Work and Modern Developments”, Bull. Amer. Math. Soc., 50:4 (2013), 527–628  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    15. Huttner M., “Riemann Beta-Scheme, Monodromy and Diophantine Approximations”, Indag. Math.-New Ser., 23:3 (2012), 522–546  crossref  mathscinet  zmath  isi  scopus  scopus
    16. Mortici C., “Estimating the Apery's Constant”, J. Comput. Anal. Appl., 14:2 (2012), 278–282  mathscinet  zmath  isi
    17. A. A. Polyanskii, “Square exponent of irrationality of ln2”, Moscow University Mathematics Bulletin, 67:1 (2012), 23–28  mathnet  crossref
    18. Władysław Narkiewicz, Springer Monographs in Mathematics, Rational Number Theory in the 20th Century, 2012, 307  crossref
    19. W. Zudilin, “Arithmetic hypergeometric series”, Russian Math. Surveys, 66:2 (2011), 369–420  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    20. Gutnik L., “Elementary Proof of Yu. V. Nesterenko Expansion of the Number Zeta(3) in Continued Fraction”, Advances in Difference Equations, 2010, 143521  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:2423
    Full-text PDF :1014
    References:130
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025