Abstract:
For some values of k, we find the asymptotic behavior, as n→∞, of the probability that a subspace, whose choice is random and equiprobable, chosen among the set of all different k-dimensional subspaces of an n-dimensional vector space over a finite field, has a given weight ω∈{1,2,…,n}. In particular, for ω∈{1,2}, this probability can have exponential behavior.
Citation:
V. I. Masol, “Asymptotic behavior of the number of certain k-dimensional subspaces over a finite field”, Mat. Zametki, 59:5 (1996), 729–736; Math. Notes, 59:5 (1996), 525–530
\Bibitem{Mas96}
\by V.~I.~Masol
\paper Asymptotic behavior of the number of certain $k$-dimensional subspaces over a~finite field
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 5
\pages 729--736
\mathnet{http://mi.mathnet.ru/mzm1767}
\crossref{https://doi.org/10.4213/mzm1767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445454}
\zmath{https://zbmath.org/?q=an:0879.60006}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 5
\pages 525--530
\crossref{https://doi.org/10.1007/BF02308820}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VM73200009}
Linking options:
https://www.mathnet.ru/eng/mzm1767
https://doi.org/10.4213/mzm1767
https://www.mathnet.ru/eng/mzm/v59/i5/p729
This publication is cited in the following 4 articles:
Igor Kuznetsov, Nickolay Kuznetsov, Queueing Theory 1, 2021, 145
I. N. Kuznetsov, “Upper and lower estimates for the number of some k-dimensional subspaces of a given weight over a finite field”, Cybern Syst Anal, 46:6 (2010), 900
V. I. Masol, I. N. Kuznetsov, “Application of a fast simulation method to the estimation of the number of some k-dimensional subspaces over a finite space”, Cybern Syst Anal, 46:3 (2010), 405
Viktoriya Masol, Lecture Notes in Computer Science, 2260, Cryptography and Coding, 2001, 301