Abstract:
Let a compact set F⊂Rn contain no less thank points. The function fk:Rn→R defined by the formula fk(M)=sup∑i=1k|MAi|, where Ai∈F are distinct points in F, is convex. For k=2 its minimum is attained at the center of the smallest ball containing F or on a segment passing through this center. For k=3 (as well as for any odd k) the minimum point of fk is unique, whereas for even k the domain where fk attains its minimum can include a segment.
\Bibitem{Zal96}
\by V.~A.~Zalgaller
\paper Distances to the two and three furthest points
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 5
\pages 703--708
\mathnet{http://mi.mathnet.ru/mzm1764}
\crossref{https://doi.org/10.4213/mzm1764}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445451}
\zmath{https://zbmath.org/?q=an:0883.52007}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 5
\pages 507--510
\crossref{https://doi.org/10.1007/BF02308817}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VM73200006}
Linking options:
https://www.mathnet.ru/eng/mzm1764
https://doi.org/10.4213/mzm1764
https://www.mathnet.ru/eng/mzm/v59/i5/p703
This publication is cited in the following 1 articles:
Papini, PL, “Averaging the k largest distances among n: k-centra in Banach spaces”, Journal of Mathematical Analysis and Applications, 291:2 (2004), 477