Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 4, Pages 558–564
DOI: https://doi.org/10.4213/mzm1750
(Mi mzm1750)
 

This article is cited in 11 scientific papers (total in 11 papers)

On the hyperbolicity criterion for noncompact Riemannian manifolds of special type

A. G. Losev

Volgograd State University
References:
Abstract: In this paper we study the behavior of bounded harmonic functions on complete Riemannian manifolds (of a certain special type) depending on the geometry of the manifold.
Received: 11.11.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 4, Pages 400–404
DOI: https://doi.org/10.1007/BF02308689
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: A. G. Losev, “On the hyperbolicity criterion for noncompact Riemannian manifolds of special type”, Mat. Zametki, 59:4 (1996), 558–564; Math. Notes, 59:4 (1996), 400–404
Citation in format AMSBIB
\Bibitem{Los96}
\by A.~G.~Losev
\paper On the hyperbolicity criterion for noncompact Riemannian manifolds of special type
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 4
\pages 558--564
\mathnet{http://mi.mathnet.ru/mzm1750}
\crossref{https://doi.org/10.4213/mzm1750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445199}
\zmath{https://zbmath.org/?q=an:0871.53037}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 4
\pages 400--404
\crossref{https://doi.org/10.1007/BF02308689}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VD93600030}
Linking options:
  • https://www.mathnet.ru/eng/mzm1750
  • https://doi.org/10.4213/mzm1750
  • https://www.mathnet.ru/eng/mzm/v59/i4/p558
  • This publication is cited in the following 11 articles:
    1. A. G. Losev, E. A. Mazepa, “Asymptotic behavior of solutions of the Dirichlet problem for the Poisson equation on model Riemannian manifolds”, Sib. elektron. matem. izv., 19:1 (2022), 66–80  mathnet  crossref  mathscinet
    2. Mazepa E.A., “Solvability of Boundary Value Problems For Poisson'S Equation in Unbounded Domains on Noncompact Riemannian Manifolds”, Differ. Equ., 56:3 (2020), 324–329  crossref  isi
    3. Losev A., Mazepa E., Romanova I., “Eigenfunctions of the Laplace Operator and Harmonic Functions on Model Riemannian Manifolds”, Lobachevskii J. Math., 41:11, SI (2020), 2190–2197  crossref  isi
    4. A. N. Kondrashov, “On the asymptotics of solutions of elliptic equations at the ends of non-compact Riemannian manifolds with metrics of a special form”, Izv. Math., 83:2 (2019), 287–314  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Losev A.G., “Solvability of the Dirichlet Problem For the Poisson Equation on Some Noncompact Riemannian Manifolds”, Differ. Equ., 53:12 (2017), 1595–1604  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Korol'kov S.A., “on the Solvability of Boundary Value Problems For the Stationary Schrodinger Equation in Unbounded Domains on Riemannian Manifolds”, Differ. Equ., 51:6 (2015), 738–744  crossref  mathscinet  zmath  isi  scopus  scopus
    7. S. A. Korolkov, “O vzaimosvyazi razreshimostei nekotorykh kraevykh zadach dlya L-garmonicheskikh funktsii v neogranichennykh oblastyakh rimanovykh mnogoobrazii”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2014, no. 2(21), 17–26  mathnet
    8. Yu. V. Goncharov, A. G. Losev, A. V. Svetlov, “Garmonicheskie funktsii na konusakh modelnykh mnogoobrazii”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2014, no. 3(22), 13–22  mathnet
    9. E. A. Mazepa, “Boundary value problems and Liouville theorems for semilinear elliptic equations on Riemannian manifolds”, Russian Math. (Iz. VUZ), 49:3 (2005), 56–62  mathnet  mathscinet  zmath
    10. Losev, AG, “Bounded solutions of Shrodinger equation on noncompact reimannian manifolds of special type”, Doklady Akademii Nauk, 367:2 (1999), 166  mathnet  mathscinet  zmath  isi
    11. A.G. Losev, “Elliptic partial differential equations on the warped products of riemannian manifolds”, Applicable Analysis, 71:1-4 (1998), 325  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:621
    Full-text PDF :287
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025