|
The variety of solutions of the singular generalized Cauchy–Riemann System
Z. D. Usmanov Institute of Mathematics, Academy of Sciences of Republic of Tajikistan
Abstract:
We prove that the equation
2¯z∂¯zw−(b(φ)+B(z))¯w=0,z∈G,
in which B(z)∈C∞(G), B0(z)=O(|z|)α), α>0,
z→0, and
b(φ)=m∑k=−m0bkeikφ,
does not have nontrivial solutions in the class C∞(G).
Received: 25.04.1995
Citation:
Z. D. Usmanov, “The variety of solutions of the singular generalized Cauchy–Riemann System”, Mat. Zametki, 59:2 (1996), 278–283; Math. Notes, 59:2 (1996), 196–200
Linking options:
https://www.mathnet.ru/eng/mzm1714https://doi.org/10.4213/mzm1714 https://www.mathnet.ru/eng/mzm/v59/i2/p278
|
Statistics & downloads: |
Abstract page: | 390 | Full-text PDF : | 215 | References: | 80 | First page: | 1 |
|