|
The variety of solutions of the singular generalized Cauchy–Riemann System
Z. D. Usmanov Institute of Mathematics, Academy of Sciences of Republic of Tajikistan
Abstract:
We prove that the equation
$$
2\overline z\partial_{\overline z}w-\bigl(b(\varphi)+B(z)\bigr)\overline w=0,\quad
z\in G,
$$
in which $B(z)\in C^\infty(G)$, $B_0(z)=O(|z|)^\alpha)$, $\alpha>0$,
$z\to0$, and
$$
b(\varphi)=\sum_{k=-m_0}^mb_ke^{ik\varphi},
$$
does not have nontrivial solutions in the class $C^\infty(G)$.
Received: 25.04.1995
Citation:
Z. D. Usmanov, “The variety of solutions of the singular generalized Cauchy–Riemann System”, Mat. Zametki, 59:2 (1996), 278–283; Math. Notes, 59:2 (1996), 196–200
Linking options:
https://www.mathnet.ru/eng/mzm1714https://doi.org/10.4213/mzm1714 https://www.mathnet.ru/eng/mzm/v59/i2/p278
|
Statistics & downloads: |
Abstract page: | 358 | Full-text PDF : | 201 | References: | 73 | First page: | 1 |
|