Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 2, Pages 224–229
DOI: https://doi.org/10.4213/mzm1709
(Mi mzm1709)
 

This article is cited in 3 scientific papers (total in 3 papers)

About cc-rigid quadrics

N. F. Palinchak

M. V. Lomonosov Moscow State University
Full-text PDF (140 kB) Citations (3)
References:
Abstract: In the article strongly nondegenerate (k,n)(k,n)-quadrics all of whose linear automorphisms are of the form zμzzμz, w|μ|2ww|μ|2w, μC{0} are considered. Quadrics all of whose linear automorphisms are of this form were called c-rigid by V. Beloshapka. The main result of the article is the following: any c-rigid strongly nondegenerate (k,n)-quadric has no nonlinear automorphisms. A table indicating the relationship between linear and nonlinear automorphisms for (k,n)-quadrics is presented.
Received: 10.06.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 2, Pages 158–162
DOI: https://doi.org/10.1007/BF02310955
Bibliographic databases:
UDC: 514.7
Language: Russian
Citation: N. F. Palinchak, “About c-rigid quadrics”, Mat. Zametki, 59:2 (1996), 224–229; Math. Notes, 59:2 (1996), 158–162
Citation in format AMSBIB
\Bibitem{Pal96}
\by N.~F.~Palinchak
\paper About $c$-rigid quadrics
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 2
\pages 224--229
\mathnet{http://mi.mathnet.ru/mzm1709}
\crossref{https://doi.org/10.4213/mzm1709}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391837}
\zmath{https://zbmath.org/?q=an:0903.32007}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 2
\pages 158--162
\crossref{https://doi.org/10.1007/BF02310955}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900020}
Linking options:
  • https://www.mathnet.ru/eng/mzm1709
  • https://doi.org/10.4213/mzm1709
  • https://www.mathnet.ru/eng/mzm/v59/i2/p224
  • This publication is cited in the following 3 articles:
    1. R. V. Gammel', I. G. Kossovskii, “The Envelope of Holomorphy of a Model Third-Degree Surface and the Rigidity Phenomenon”, Proc. Steklov Inst. Math., 253 (2006), 22–36  mathnet  crossref  mathscinet  zmath  elib
    2. Beloshapka, VK, “Real submanifolds in complex space: polynomial models, automorphisms, and classification problems”, Russian Mathematical Surveys, 57:1 (2002), 1  mathnet  crossref  mathscinet  adsnasa  isi  scopus  scopus
    3. V. K. Beloshapka, “Invariants of CR-manifolds associated with the tangent quadric”, Math. Notes, 59:1 (1996), 31–38  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :180
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025