Abstract:
We find the exact value of the expression
ε(l,q)(W(r,s)Hω1,ω2(G))=sup{‖f(l,q)(⋅,⋅)−S(l,q)1,1(f;⋅,⋅)‖C(G):f∈W(r,s)Hω1,ω2(G)},
where φ(l,q)(x,y)=∂1+qφ/∂xl∂yq
(l,q=0,1, 1⩽) and S_{1,1}(f;x,y) is a bilinear spline interpolating f(x,y) in the nodes of the grid \Delta_{mn}=\Delta_m^x\times\Delta_n^y with \Delta_m^x: x_i=i/m (i=\overline{0,m}), \Delta_n^y: y_j=j/n (j=\overline{0,n}). Here W^{(r,s)}H^{\omega_1,\omega_2}(G) is the class of functions f(x,y) with continuous derivatives f^{(r,s)}(x,y) (r,s=0,1, 1\le r+s\le2) on the square G=[0,1]\times[0,1] and with the modulus of continuity satisfying the inequality (\omega(f^{(r,s)};t,\tau)\le\omega_1(t)+\omega_2(\tau), where \omega_1(t) and \omega_2(t) are the given moduli of continuity.
Citation:
M. Sh. Shabozov, “Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines”, Mat. Zametki, 59:1 (1996), 142–152; Math. Notes, 59:1 (1996), 104–111
\Bibitem{Sha96}
\by M.~Sh.~Shabozov
\paper Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 1
\pages 142--152
\mathnet{http://mi.mathnet.ru/mzm1701}
\crossref{https://doi.org/10.4213/mzm1701}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391829}
\zmath{https://zbmath.org/?q=an:0954.41012}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 1
\pages 104--111
\crossref{https://doi.org/10.1007/BF02312471}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900013}
Linking options:
https://www.mathnet.ru/eng/mzm1701
https://doi.org/10.4213/mzm1701
https://www.mathnet.ru/eng/mzm/v59/i1/p142
This publication is cited in the following 6 articles:
M. Sh. Shabozov, U. N. Zevarshoev, “On simultaneous approximation of functions of two variables and their derivatives by bilinear interpolation splines”, J. Math. Sci., 246:6 (2020), 800–811
M. Sh. Shabozov, S. N. Mekhmonzoda, “Sharp Estimates of the Error of Interpolation by Bilinear Splines for Some Classes of Functions”, Math. Notes, 102:3 (2017), 417–423
Babenko V.F. Leskevich T.Yu., “Approximation of Some Classes of Functions of Many Variables by Harmonic Splines”, Ukr. Math. J., 64:8 (2013), 1151–1167
M. Sh. Shabozov, A. A. Shabozova, “On the approximation of curves with polylines”, Vestnik St.Petersb. Univ.Math., 46:2 (2013), 102
S. B. Vakarchuk, K. Yu. Myskin, “Some Problems of Simultaneous Approximation of Functions of Two Variables and Their Derivatives by Interpolation Bilinear Splines”, Ukr Math J, 57:2 (2005), 173
Gheorghe Micula, Sanda Micula, Handbook of Splines, 1999, 383