Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 1, Pages 142–152
DOI: https://doi.org/10.4213/mzm1701
(Mi mzm1701)
 

This article is cited in 6 scientific papers (total in 6 papers)

Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines

M. Sh. Shabozov

Tajik State University
Full-text PDF (174 kB) Citations (6)
References:
Abstract: We find the exact value of the expression
\begin{multline}\quad \varepsilon^{(l,q)}\bigl(W^{(r,s)}H^{\omega_1,\omega_2}(G)\bigr)=\sup\bigl\{\|f^{(l,q)}(\cdot,\cdot) -S_{1,1}^{(l,q)}(f;\cdot,\cdot)\|_{C(G)}: f\in W^{(r,s)}H^{\omega_1,\omega_2}(G)\bigr\}, \end{multline}
where $\varphi^{(l,q)}(x,y)=\partial^{1+q}\varphi/\partial x^l\partial y^q$ ($l,q=0,1$, $1\le l+q\le2$) and $S_{1,1}(f;x,y)$ is a bilinear spline interpolating $f(x,y)$ in the nodes of the grid $\Delta_{mn}=\Delta_m^x\times\Delta_n^y$ with $\Delta_m^x$: $x_i=i/m$ ($i=\overline{0,m}$), $\Delta_n^y$: $y_j=j/n$ ($j=\overline{0,n}$). Here $W^{(r,s)}H^{\omega_1,\omega_2}(G)$ is the class of functions $f(x,y)$ with continuous derivatives $f^{(r,s)}(x,y)$ ($r,s=0,1$, $1\le r+s\le2$) on the square $G=[0,1]\times[0,1]$ and with the modulus of continuity satisfying the inequality ($\omega(f^{(r,s)};t,\tau)\le\omega_1(t)+\omega_2(\tau)$, where $\omega_1(t)$ and $\omega_2(t)$ are the given moduli of continuity.
Received: 07.10.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 1, Pages 104–111
DOI: https://doi.org/10.1007/BF02312471
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, “Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines”, Mat. Zametki, 59:1 (1996), 142–152; Math. Notes, 59:1 (1996), 104–111
Citation in format AMSBIB
\Bibitem{Sha96}
\by M.~Sh.~Shabozov
\paper Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 1
\pages 142--152
\mathnet{http://mi.mathnet.ru/mzm1701}
\crossref{https://doi.org/10.4213/mzm1701}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391829}
\zmath{https://zbmath.org/?q=an:0954.41012}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 1
\pages 104--111
\crossref{https://doi.org/10.1007/BF02312471}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900013}
Linking options:
  • https://www.mathnet.ru/eng/mzm1701
  • https://doi.org/10.4213/mzm1701
  • https://www.mathnet.ru/eng/mzm/v59/i1/p142
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :226
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024