Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 1, Pages 3–11
DOI: https://doi.org/10.4213/mzm1689
(Mi mzm1689)
 

This article is cited in 4 scientific papers (total in 4 papers)

Spectral properties of operators of the theory of harmonic potential

J. Ahnera, V. V. Dyakinb, V. Ya. Raevskiib, S. Ritterc

a Vanderbilt University
b Institute of Metal Physics, Ural Division of the Russian Academy of Sciences
c Universität Karlsruhe
Full-text PDF (202 kB) Citations (4)
References:
Abstract: We classify the points of the spectrum of the operators $B$ and $B^*$ of the theory of harmonic potential on a smooth closed surface $S\subset\mathbb R^3$. These operators give the direct value on $S$ of the normal derivative of the simple layer potential and the double layer potential. We show that zero can belong to the point spectrum of both operators in $L_2(S)$. We prove that the half-interval $[-2,2)$ is densely filled by spectrum points of the operators for a varying surface; this is a generalization of the classical result of Plemelj. We obtain a series of new spectral properties of the operators $B$ and $B^*$ on ellipsoidal surfaces.
Received: 13.12.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 1, Pages 3–9
DOI: https://doi.org/10.1007/BF02312459
Bibliographic databases:
UDC: 517
Language: Russian
Citation: J. Ahner, V. V. Dyakin, V. Ya. Raevskii, S. Ritter, “Spectral properties of operators of the theory of harmonic potential”, Mat. Zametki, 59:1 (1996), 3–11; Math. Notes, 59:1 (1996), 3–9
Citation in format AMSBIB
\Bibitem{AhnDyaRae96}
\by J.~Ahner, V.~V.~Dyakin, V.~Ya.~Raevskii, S.~Ritter
\paper Spectral properties of operators of the theory of harmonic potential
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 1
\pages 3--11
\mathnet{http://mi.mathnet.ru/mzm1689}
\crossref{https://doi.org/10.4213/mzm1689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391817}
\zmath{https://zbmath.org/?q=an:0879.31004}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 1
\pages 3--9
\crossref{https://doi.org/10.1007/BF02312459}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900001}
Linking options:
  • https://www.mathnet.ru/eng/mzm1689
  • https://doi.org/10.4213/mzm1689
  • https://www.mathnet.ru/eng/mzm/v59/i1/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:491
    Full-text PDF :215
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024