Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 1, Pages 3–11
DOI: https://doi.org/10.4213/mzm1689
(Mi mzm1689)
 

This article is cited in 4 scientific papers (total in 4 papers)

Spectral properties of operators of the theory of harmonic potential

J. Ahnera, V. V. Dyakinb, V. Ya. Raevskiib, S. Ritterc

a Vanderbilt University
b Institute of Metal Physics, Ural Division of the Russian Academy of Sciences
c Universität Karlsruhe
Full-text PDF (202 kB) Citations (4)
References:
Abstract: We classify the points of the spectrum of the operators B and B of the theory of harmonic potential on a smooth closed surface SR3. These operators give the direct value on S of the normal derivative of the simple layer potential and the double layer potential. We show that zero can belong to the point spectrum of both operators in L2(S). We prove that the half-interval [2,2) is densely filled by spectrum points of the operators for a varying surface; this is a generalization of the classical result of Plemelj. We obtain a series of new spectral properties of the operators B and B on ellipsoidal surfaces.
Received: 13.12.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 1, Pages 3–9
DOI: https://doi.org/10.1007/BF02312459
Bibliographic databases:
UDC: 517
Language: Russian
Citation: J. Ahner, V. V. Dyakin, V. Ya. Raevskii, S. Ritter, “Spectral properties of operators of the theory of harmonic potential”, Mat. Zametki, 59:1 (1996), 3–11; Math. Notes, 59:1 (1996), 3–9
Citation in format AMSBIB
\Bibitem{AhnDyaRae96}
\by J.~Ahner, V.~V.~Dyakin, V.~Ya.~Raevskii, S.~Ritter
\paper Spectral properties of operators of the theory of harmonic potential
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 1
\pages 3--11
\mathnet{http://mi.mathnet.ru/mzm1689}
\crossref{https://doi.org/10.4213/mzm1689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391817}
\zmath{https://zbmath.org/?q=an:0879.31004}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 1
\pages 3--9
\crossref{https://doi.org/10.1007/BF02312459}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900001}
Linking options:
  • https://www.mathnet.ru/eng/mzm1689
  • https://doi.org/10.4213/mzm1689
  • https://www.mathnet.ru/eng/mzm/v59/i1/p3
  • This publication is cited in the following 4 articles:
    1. Abdumalik Rakhimov, 6TH INTERNATIONAL CONFERENCE ON MATHEMATICAL APPLICATIONS IN ENGINEERING, 2880, 6TH INTERNATIONAL CONFERENCE ON MATHEMATICAL APPLICATIONS IN ENGINEERING, 2023, 040002  crossref
    2. Jaydeep P Bardhan, Matthew G Knepley, “Computational science and re-discovery: open-source implementation of ellipsoidal harmonics for problems in potential theory”, Comput. Sci. Disc., 5:1 (2012), 014006  crossref
    3. Bardhan J.P., “Rapid Bounds on Electrostatic Energies Using Diagonal Approximations of Boundary-Integral Equations”, Piers 2010 Cambridge: Progress in Electromagnetics Research Symposium Proceedings, Vols 1 and 2, Progress in Electromagnetics Research Symposium, Electromagnetics Acad, 2010, 9–18  isi
    4. Bardhan, JP, “Bounding the electrostatic free energies associated with linear continuum models of molecular solvation”, Journal of Chemical Physics, 130:10 (2009), 104108  crossref  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:527
    Full-text PDF :232
    References:94
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025