Abstract:
In the note we consider ordered groupoids with the Riesz interpolation property, that is, if ai⩽bj (i,j=1,2), then there exists a c such that ai⩽c⩽bj (i,j=1,2). For such groupoids possessing the descending chain condition for the positive cone and the property
∀a,ba⩽b⟹∃u,vau=va=b,
a theorem analogous to the fundamental theorem of arithmetic is proved. The result is a generalization of known results for lattice-ordered monoids, loops, and quasigroups.
Citation:
V. A. Testov, “An analog of the fundamental theorem of arithmetic in ordered groupoids”, Mat. Zametki, 62:6 (1997), 910–915; Math. Notes, 62:6 (1997), 762–766
\Bibitem{Tes97}
\by V.~A.~Testov
\paper An analog of the fundamental theorem of arithmetic in ordered groupoids
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 6
\pages 910--915
\mathnet{http://mi.mathnet.ru/mzm1680}
\crossref{https://doi.org/10.4213/mzm1680}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1635186}
\zmath{https://zbmath.org/?q=an:0926.06007}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 6
\pages 762--766
\crossref{https://doi.org/10.1007/BF02355465}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075396200031}
Linking options:
https://www.mathnet.ru/eng/mzm1680
https://doi.org/10.4213/mzm1680
https://www.mathnet.ru/eng/mzm/v62/i6/p910
This publication is cited in the following 1 articles:
Brauner N., Gravier S., Kronek L.-Ph., Meunier F., “Lad Models, Trees, and an Analog of the Fundamental Theorem of Arithmetic”, Discrete Appl. Math., 161:7-8 (2013), 909–920