Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 73, Issue 1, Pages 49–62
DOI: https://doi.org/10.4213/mzm167
(Mi mzm167)
 

This article is cited in 11 scientific papers (total in 11 papers)

Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
References:
Abstract: We prove the absolute continuity of the spectrum of the Schrödinger operator in $L^2(\mathbb R^n)$, $n\ge3$, with periodic (with a common period lattice $\Lambda$) scalar $V$ and vector $A\in C^1(\mathbb R^n,\mathbb R^n)$ potentials for which either $A\in H_{\operatorname{loc}}^q(\mathbb R^n;\mathbb R^n)$, $2q>n-2$, or the Fourier series of the vector potential $A$ converges absolutely, $V\in L_w^{p(n)}(K)$, where $K$ is an elementary cell of the lattice $\Lambda$, $p(n)=n/2$ for $n=3,4,5,6$, and $p(n)=n-3$ for $n\ge7$, and the value of $\lim_{t\to+\infty}\|\theta_tV\|_{L_w^{p(n)}(K)}$ is sufficiently small, where $\theta_t(x)=0$, if $|V(x)|\le t$ and $\theta_t(x)=1$ otherwise, $x\in K$ and $t>0$.
Received: 28.07.2000
English version:
Mathematical Notes, 2003, Volume 73, Issue 1, Pages 46–57
DOI: https://doi.org/10.1023/A:1022169916738
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: L. I. Danilov, “Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator”, Mat. Zametki, 73:1 (2003), 49–62; Math. Notes, 73:1 (2003), 46–57
Citation in format AMSBIB
\Bibitem{Dan03}
\by L.~I.~Danilov
\paper Absolute Continuity of the Spectrum of a Periodic Schr\"odinger Operator
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 1
\pages 49--62
\mathnet{http://mi.mathnet.ru/mzm167}
\crossref{https://doi.org/10.4213/mzm167}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1993539}
\zmath{https://zbmath.org/?q=an:1163.35443}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 1
\pages 46--57
\crossref{https://doi.org/10.1023/A:1022169916738}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000181384200005}
Linking options:
  • https://www.mathnet.ru/eng/mzm167
  • https://doi.org/10.4213/mzm167
  • https://www.mathnet.ru/eng/mzm/v73/i1/p49
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:685
    Full-text PDF :199
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024