|
This article is cited in 11 scientific papers (total in 11 papers)
Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator
L. I. Danilov Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Abstract:
We prove the absolute continuity of the spectrum of the Schrödinger operator in $L^2(\mathbb R^n)$, $n\ge3$, with periodic (with a common period lattice $\Lambda$) scalar $V$ and vector $A\in C^1(\mathbb R^n,\mathbb R^n)$ potentials for which either $A\in H_{\operatorname{loc}}^q(\mathbb R^n;\mathbb R^n)$, $2q>n-2$, or the Fourier series of the vector potential $A$ converges absolutely, $V\in L_w^{p(n)}(K)$, where $K$ is an elementary cell of the lattice $\Lambda$, $p(n)=n/2$ for $n=3,4,5,6$, and $p(n)=n-3$ for $n\ge7$, and the value of $\lim_{t\to+\infty}\|\theta_tV\|_{L_w^{p(n)}(K)}$ is sufficiently small, where $\theta_t(x)=0$, if $|V(x)|\le t$ and $\theta_t(x)=1$ otherwise, $x\in K$ and $t>0$.
Received: 28.07.2000
Citation:
L. I. Danilov, “Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator”, Mat. Zametki, 73:1 (2003), 49–62; Math. Notes, 73:1 (2003), 46–57
Linking options:
https://www.mathnet.ru/eng/mzm167https://doi.org/10.4213/mzm167 https://www.mathnet.ru/eng/mzm/v73/i1/p49
|
Statistics & downloads: |
Abstract page: | 685 | Full-text PDF : | 199 | References: | 83 | First page: | 1 |
|