Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 5, Pages 751–765
DOI: https://doi.org/10.4213/mzm1661
(Mi mzm1661)
 

This article is cited in 21 scientific papers (total in 21 papers)

Weighted Korn inequalities in paraboloidal domains

S. A. Nazarov

Admiral Makarov State Maritime Academy
References:
Abstract: A weighted Korn inequality in a domain ΩRn with paraboloidal exit Π to infinity is obtained. Asymptotic sharpness of the inequality is achieved by using different weight factors for the longitudinal (with respect to the axis of Π) and transversal displacement vector components and by making the weight factors of the derivatives depend on the direction of differentiation. The solvability of the elasticity problem in the energy class (the closure of C0(¯Ω)n in the norm generated by the elastic energy functional) is studied; the dimensions of the kernel and the cokerned of the corresponding operator depend on the exponent s(,1) in the “grate of expansion” of the paraboloid Π.
Received: 20.04.1996
English version:
Mathematical Notes, 1997, Volume 62, Issue 5, Pages 629–641
DOI: https://doi.org/10.1007/BF02361301
Bibliographic databases:
UDC: 517.946+539.3
Language: Russian
Citation: S. A. Nazarov, “Weighted Korn inequalities in paraboloidal domains”, Mat. Zametki, 62:5 (1997), 751–765; Math. Notes, 62:5 (1997), 629–641
Citation in format AMSBIB
\Bibitem{Naz97}
\by S.~A.~Nazarov
\paper Weighted Korn inequalities in paraboloidal domains
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 5
\pages 751--765
\mathnet{http://mi.mathnet.ru/mzm1661}
\crossref{https://doi.org/10.4213/mzm1661}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1627866}
\zmath{https://zbmath.org/?q=an:0918.35028}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 5
\pages 629--641
\crossref{https://doi.org/10.1007/BF02361301}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075396200012}
Linking options:
  • https://www.mathnet.ru/eng/mzm1661
  • https://doi.org/10.4213/mzm1661
  • https://www.mathnet.ru/eng/mzm/v62/i5/p751
    Erratum
    This publication is cited in the following 21 articles:
    1. G Griso, “Decomposition of the Displacements of a Plate With Very High Thickness Contrast”, Asymptotic Analysis, 2025  crossref
    2. Nazarov S.A., Slutskij A.S., Taskinen J., “Asymptotic Analysis of An Elastic Rod With Rounded Ends”, Math. Meth. Appl. Sci., 43:10 (2020), 6396–6415  crossref  isi
    3. Neff P., Pauly D., Witsch K.-J., “Poincaré Meets Korn Via Maxwell: Extending Korn's First Inequality To Incompatible Tensor Fields”, J. Differ. Equ., 258:4 (2015), 1267–1302  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Nazarov S.A., Slutskij A.S., Taskinen J., “Korn Inequality For a Thin Rod With Rounded Ends”, Math. Meth. Appl. Sci., 37:16 (2014), 2463–2483  crossref  mathscinet  zmath  isi  scopus  scopus
    5. S. A. Nazarov, “Notes to the proof of a weighted Korn inequality for an elastic body with peak-shaped cusps”, J Math Sci, 181:5 (2012), 632  crossref
    6. Campbell A. Nazarov S.A. Sweers G.H., “Spectra of Two-Dimensional Models for Thin Plates with Sharp Edges”, SIAM J. Math. Anal., 42:6 (2010), 3020–3044  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    7. S. A. Nazarov, “The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a Cusp”, Funct. Anal. Appl., 43:1 (2009), 44–54  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. Cardone, G, “A criterion for the existence of the essential spectrum for beak-shaped elastic bodies”, Journal de Mathematiques Pures et Appliquees, 92:6 (2009), 628  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Cardone, G, ““Absorption” effect for elastic waves by the beak-shaped boundary irregularity”, Doklady Physics, 54:3 (2009), 146  crossref  zmath  adsnasa  isi  elib  scopus  scopus
    10. S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Russian Math. Surveys, 63:1 (2008), 35–107  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    11. S. A. Nazarov, “The spectrum of the elasticity problem for a spiked body”, Siberian Math. J., 49:5 (2008), 874–893  mathnet  crossref  mathscinet  isi  elib  elib
    12. S. A. Nazarov, “Concentration of trapped modes in problems of the linearized theory of water waves”, Sb. Math., 199:12 (2008), 1783–1807  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. Nazarov, SA, “The natural oscillations of an elastic body with a heavy rigid spike-shaped inclusion”, Pmm Journal of Applied Mathematics and Mechanics, 72:5 (2008), 561  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    14. Nazarov, SA, “A criterion of the continuous spectrum for elasticity and other self-adjoint systems on sharp peak-shaped domains”, Comptes Rendus Mecanique, 335:12 (2007), 751  crossref  zmath  adsnasa  isi  elib  scopus  scopus
    15. Nazarov, SA, “On eigenoscillations of a solid with a blunted pick”, Doklady Physics, 52:10 (2007), 560  crossref  zmath  adsnasa  isi  elib  scopus  scopus
    16. A. A. Kulikov, S. A. Nazarov, “Cracks in piezoelectric and electroconductive bodies”, J. Appl. Industr. Math., 1:2 (2007), 201–216  mathnet  crossref  mathscinet  elib
    17. S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106  mathnet  crossref  crossref  mathscinet  zmath  isi
    18. S. A. Nazarov, A. S. Slutskii, “Saint-venant principle for paraboloidal elastic bodies”, J Math Sci, 98:6 (2000), 717  crossref
    19. S. A. Nazarov, “Minimal requirements on the smoothness of data preserving accuracy of a one-dimensional model of rods”, J Math Sci, 101:2 (2000), 2987  crossref
    20. S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:458
    Full-text PDF :202
    References:72
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025