Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 5, Pages 677–686
DOI: https://doi.org/10.4213/mzm1654
(Mi mzm1654)
 

This article is cited in 3 scientific papers (total in 3 papers)

Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means

I. N. Brui

Belarusian Institute of Law
Full-text PDF (200 kB) Citations (3)
References:
Abstract: Suppose that a lower triangular matrix $\mu\colon[\mu_m^{(n)}]$ defines a conservative summation method for series, i.e.,
$$ \sup_{n\in{\mathbb Z}_0}\sum_{m=0}^n|\mu_m^{(n)}-\mu_{m+1}^{(n)}|<\infty,\qquad \forall m\in{\mathbb Z}_0 \quad \lim_{n\to\infty}\mu_m^{(n)}=\rho_m\in\mathbb R, $$
and the sequence $(\rho_m)$, $m\in{\mathbb Z}_0$, is bounded away from zero. Then the trigonometric series $\sum_{m=-\infty}^\infty\gamma_me^{imx}$ is the Fourier series of a function $f\in L^p(\mathbb T)$, where $p\in\left]1;\infty\right[$, if and only if the sequence of $p$-norms of its $\mu$-means is bounded:
$$ \sup_{n\in{\mathbb Z}_0}\biggl\|\sum_{m=-n}^n\mu_{|m|}^{(n)}\gamma_me^{imx}\biggr\|_p<\infty. $$
In the case of the Fejér method, we have the test due to W. and G. Young (1913). In the case of the Fourier method, we obtain the converse of the Riesz theorem (1927).
Received: 14.08.1995
English version:
Mathematical Notes, 1997, Volume 62, Issue 5, Pages 566–574
DOI: https://doi.org/10.1007/BF02361294
Bibliographic databases:
UDC: 517.518.456
Language: Russian
Citation: I. N. Brui, “Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means”, Mat. Zametki, 62:5 (1997), 677–686; Math. Notes, 62:5 (1997), 566–574
Citation in format AMSBIB
\Bibitem{Bru97}
\by I.~N.~Brui
\paper Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 5
\pages 677--686
\mathnet{http://mi.mathnet.ru/mzm1654}
\crossref{https://doi.org/10.4213/mzm1654}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1627919}
\zmath{https://zbmath.org/?q=an:0914.42004}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 5
\pages 566--574
\crossref{https://doi.org/10.1007/BF02361294}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075396200005}
Linking options:
  • https://www.mathnet.ru/eng/mzm1654
  • https://doi.org/10.4213/mzm1654
  • https://www.mathnet.ru/eng/mzm/v62/i5/p677
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:465
    Full-text PDF :236
    References:82
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024