|
This article is cited in 6 scientific papers (total in 6 papers)
Asymptotics and weighted estimates of Meixner polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$
I. I. Sharapudinov Daghestan State Pedagogical University
Abstract:
Suppose that $0<\delta\le1$, $N=1/\delta$ and $0\le\alpha$ is an integer. For the classical Meixner polynomials $\mathfrak M_{n,N}^\alpha(x)$ orthonormal on the gird $\{0,\delta,2\delta,\dots\}$ with weight $\rho(x)=(1-e^{-\delta})^\alpha\times\Gamma(Nx+\alpha+1)/\Gamma(Nx+1)$, the following asymptotic formula is obtained:
$$
\mathfrak M_{n,N}^\alpha(z)=\Lambda_n^\alpha(z)+v_{n,N}^\alpha(z).
$$
The remainder $v_{n,N}^\alpha(z)$ for $n\le\lambda N$ satisfies the estimate
$$
|v_{n,N}^\alpha(z)|^2\le c(\alpha,\lambda)\delta
\sum_{k=0}^n|\Lambda_k^\alpha(z)|^2,
$$
where $\Lambda_k^\alpha(x)$ are the Laguerre orthonormal polynomials. As a consequence, a weighted estimate, for the Meixner polynomial $\mathfrak M_{n,N}^\alpha(x)$ on the semiaxis $[0,\infty)$ is obtained.
Received: 28.03.1996 Revised: 15.11.1996
Citation:
I. I. Sharapudinov, “Asymptotics and weighted estimates of Meixner polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$”, Mat. Zametki, 62:4 (1997), 603–616; Math. Notes, 62:4 (1997), 501–512
Linking options:
https://www.mathnet.ru/eng/mzm1642https://doi.org/10.4213/mzm1642 https://www.mathnet.ru/eng/mzm/v62/i4/p603
|
Statistics & downloads: |
Abstract page: | 469 | Full-text PDF : | 230 | References: | 70 | First page: | 1 |
|