Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 4, Pages 549–563
DOI: https://doi.org/10.4213/mzm1638
(Mi mzm1638)
 

This article is cited in 9 scientific papers (total in 9 papers)

Singularities of embedding operators between symmetric function spaces on $[0,1]$

S. Ya. Novikov

Samara State University
Full-text PDF (273 kB) Citations (9)
References:
Abstract: The properties of the identity embedding operator $I(X_1,X_2)$, $(X_1\subset X_2)$ between symmetric function spaces on $[0,1]$ such as weak compactness, strict singularity (in two versions), and the property of being absolutely summing are examined. Banach and quasi-Banach spaces are considered. A complete description of the linear hull closed with respect to measure of a sequence $(g_n^{(r)})$ of independent symmetric equidistributed random variables with
$$ d(g_n^{(r)};t) =\operatorname{meas}\bigl(\omega: |g_n^{(r)}(\omega)|>t\bigr) =\frac 1{t^r},\qquad t\ge1,\quad 0<r<\infty, $$
is obtained, and the boundaries for this space on the scale of symmetric spaces are found.
Received: 07.02.1996
English version:
Mathematical Notes, 1997, Volume 62, Issue 4, Pages 457–468
DOI: https://doi.org/10.1007/BF02358979
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: S. Ya. Novikov, “Singularities of embedding operators between symmetric function spaces on $[0,1]$”, Mat. Zametki, 62:4 (1997), 549–563; Math. Notes, 62:4 (1997), 457–468
Citation in format AMSBIB
\Bibitem{Nov97}
\by S.~Ya.~Novikov
\paper Singularities of embedding operators between symmetric function spaces on $[0,1]$
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 4
\pages 549--563
\mathnet{http://mi.mathnet.ru/mzm1638}
\crossref{https://doi.org/10.4213/mzm1638}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620154}
\zmath{https://zbmath.org/?q=an:0914.46029}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 4
\pages 457--468
\crossref{https://doi.org/10.1007/BF02358979}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900026}
Linking options:
  • https://www.mathnet.ru/eng/mzm1638
  • https://doi.org/10.4213/mzm1638
  • https://www.mathnet.ru/eng/mzm/v62/i4/p549
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :190
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024