Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 4, Pages 510–519
DOI: https://doi.org/10.4213/mzm1634
(Mi mzm1634)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the semigroup nilpotency and the Lie nilpotency of associative algebras

A. N. Krasilnikov

Moscow State Pedagogical University
References:
Abstract: To each associative ring $R$ we can assign the adjoint Lie ring $R^{(-)}$ (with the operation $(a,b)=ab-ba$) and two semigroups, the multiplicative semigroup $M(R)$ and the associated semigroup $A(R)$ (with the operation $a\circ b=ab+a+b$). It is clear that a Lie ring $R^{(-)}$ is commutative if and only if the semigroup $M(R)$ (or $A(R)$) is commutative. In the present paper we try to generalize this observation to the case in which $R^{(-)}$ is a nilpotent Lie ring. It is proved that if $R$ is an associative algebra with identity element over an infinite field $F$, then the algebra $R^{(-)}$ is nilpotent of length $c$ if and only if the semigroup $M(R)$ (or $A(R)$) is nilpotent of length $c$ (in the sense of A. I. Mal'tsev or B. Neumann and T. Taylor). For the case in which $R$ is an algebra without identity element over $F$, this assertion remains valid for $A(R)$, but fails for $M(R)$. Another similar results are obtained.
Received: 26.03.1996
English version:
Mathematical Notes, 1997, Volume 62, Issue 4, Pages 426–433
DOI: https://doi.org/10.1007/BF02358975
Bibliographic databases:
UDC: 512.552+512.532
Language: Russian
Citation: A. N. Krasilnikov, “On the semigroup nilpotency and the Lie nilpotency of associative algebras”, Mat. Zametki, 62:4 (1997), 510–519; Math. Notes, 62:4 (1997), 426–433
Citation in format AMSBIB
\Bibitem{Kra97}
\by A.~N.~Krasilnikov
\paper On the semigroup nilpotency and the Lie nilpotency of associative algebras
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 4
\pages 510--519
\mathnet{http://mi.mathnet.ru/mzm1634}
\crossref{https://doi.org/10.4213/mzm1634}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620138}
\zmath{https://zbmath.org/?q=an:0919.16026}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 4
\pages 426--433
\crossref{https://doi.org/10.1007/BF02358975}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900022}
Linking options:
  • https://www.mathnet.ru/eng/mzm1634
  • https://doi.org/10.4213/mzm1634
  • https://www.mathnet.ru/eng/mzm/v62/i4/p510
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :219
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024