Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 3, Pages 404–417
DOI: https://doi.org/10.4213/mzm1622
(Mi mzm1622)
 

This article is cited in 8 scientific papers (total in 8 papers)

On a method for interpolating functions on chaotic nets

O. V. Matveev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (263 kB) Citations (8)
References:
Abstract: Suppose $m,n\in\mathbb N$, $m\equiv n(\operatorname{mod}2)$, $K(x)=|x|^m$ for $m$ odd, $K(x)=|x|^m\ln|x|$ for $m$ even ($x\in\mathbb R^n$), $\mathscr P$ is the set of real polynomials in $n$ variables of total degree $\le m/2$, and $x_1,\dots,x_N\in \mathbb R^n$. We construct a function of the form
$$ \sum_{j=1}^N\lambda_jK(x-x_j)+P(x), \qquad\text{where}\quad \lambda_j\in\mathbb R,\quad P\in\mathscr P,\quad \sum_{j=1}^N\lambda_jQ(x_j)=0\quad\forall Q\in\mathscr P, $$
coinciding with a given function $f(x)$ at the points $x_1,\dots,x_N$. Error estimates for the approximation of functions $f\in W_p^k(\Omega)$ and their $l$th-order derivatives in the norms $L_q(\Omega_\varepsilon)$ are obtained for this interpolation method, where $\Omega$ is a bounded domain in $\mathbb R^n$, $\varepsilon>0$, $\Omega_\varepsilon=\{x\in\Omega:\operatorname{dist}(x,\partial\Omega)>\varepsilon\}$.
Received: 28.04.1994
Revised: 28.02.1996
English version:
Mathematical Notes, 1997, Volume 62, Issue 3, Pages 339–349
DOI: https://doi.org/10.1007/BF02360875
Bibliographic databases:
UDC: 517.518
Language: Russian
Citation: O. V. Matveev, “On a method for interpolating functions on chaotic nets”, Mat. Zametki, 62:3 (1997), 404–417; Math. Notes, 62:3 (1997), 339–349
Citation in format AMSBIB
\Bibitem{Mat97}
\by O.~V.~Matveev
\paper On a method for interpolating functions on chaotic nets
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 404--417
\mathnet{http://mi.mathnet.ru/mzm1622}
\crossref{https://doi.org/10.4213/mzm1622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620074}
\zmath{https://zbmath.org/?q=an:0920.41001}
\elib{https://elibrary.ru/item.asp?id=13254863}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 339--349
\crossref{https://doi.org/10.1007/BF02360875}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900009}
Linking options:
  • https://www.mathnet.ru/eng/mzm1622
  • https://doi.org/10.4213/mzm1622
  • https://www.mathnet.ru/eng/mzm/v62/i3/p404
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024