Abstract:
For a function f(x,y), the sets Ja of all its discontinuity points with a jump of a or more (that is, such that the oscillation of the function in the neighborhood of any point from Ja is not smaller than a) are studied. Two cases are considered: (1) f is continuous along any straight line; (2) f is continuous along lines parallel to the x- and y-axes. In the first case, conditions that must be met by the set Ja are given. In the second case, it is shown that a (closed) set F can be the set Ja for a certain function if and only if the projections of F on the coordinate axes nowhere dense.
This publication is cited in the following 3 articles:
A. I. Aptekarev, A. L. Afendikov, F. I. Ataullakhanov, N. K. Balabaev, V. N. Biktashev, I. V. Biktasheva, R. M. Borisyuk, N. D. Vvedenskaya, R. D. Dagkesamanskii, Yu. G. Zarkhin, Yu. S. Ilyashenko, V. D. Lakhno, V. Yu. Lunin, N. L. Lunina, E. V. Nikolaev, V. S. Posvyanskii, M. A. Roitberg, V. S. Ryaben'kii, L. B. Ryashko, Ya. G. Sinai, V. M. Tikhomirov, A. A. Tokarev, A. G. Urzhumtsev, A. I. Khibnik, “To the memory of Èmmanuil Èl'evich Shnol'”, Russian Math. Surveys, 72:1 (2017), 185–198
Ciesielski K.Ch., Miller D., “A Continuous Tale on Continuous and Separately Continuous Functions”, Real Anal. Exch., 41:1 (2016), 19–54
V. I. Arnol'd, R. M. Borisyuk, I. M. Gel'fand, Yu. S. Ilyashenko, V. Yu. Lunin, E. V. Nikolaev, Yu. B. Radvogin, M. A. Roitberg, Ya. G. Sinai, A. I. Khibnik, “Emmanuil El'evich Shnol' (on his 70th birthday)”, Russian Math. Surveys, 54:3 (1999), 677–683