Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 2, Pages 206–215
DOI: https://doi.org/10.4213/mzm1605
(Mi mzm1605)
 

This article is cited in 9 scientific papers (total in 9 papers)

On a transformation operator

I. M. Guseinov

Baku State University
Full-text PDF (175 kB) Citations (9)
References:
Abstract: We prove the existence of a transformation operator that takes the solution of the equation $y''=\lambda^{2n}y$ to the solution of the equation
$$ y''-\bigl(q_0(x)+\lambda q_1(x)+\dots+\lambda^{n-1}q_{n-1}(x)\bigr)y=\lambda^{2n}y $$
with a condition at infinity. Some properties of the kernel of this operator are studied.
Received: 15.08.1995
English version:
Mathematical Notes, 1997, Volume 62, Issue 2, Pages 172–180
DOI: https://doi.org/10.1007/BF02355905
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: I. M. Guseinov, “On a transformation operator”, Mat. Zametki, 62:2 (1997), 206–215; Math. Notes, 62:2 (1997), 172–180
Citation in format AMSBIB
\Bibitem{Gus97}
\by I.~M.~Guseinov
\paper On a transformation operator
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 2
\pages 206--215
\mathnet{http://mi.mathnet.ru/mzm1605}
\crossref{https://doi.org/10.4213/mzm1605}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619916}
\zmath{https://zbmath.org/?q=an:0921.34075}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 2
\pages 172--180
\crossref{https://doi.org/10.1007/BF02355905}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071268600024}
Linking options:
  • https://www.mathnet.ru/eng/mzm1605
  • https://doi.org/10.4213/mzm1605
  • https://www.mathnet.ru/eng/mzm/v62/i2/p206
  • This publication is cited in the following 9 articles:
    1. Anar Adiloğlu-Nabiev, Advances in Computer and Electrical Engineering, Emerging Applications of Differential Equations and Game Theory, 2020, 163  crossref
    2. V. V. Katrakhov, S. M. Sitnik, “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Singulyarnye differentsialnye uravneniya, SMFN, 64, no. 2, Rossiiskii universitet druzhby narodov, M., 2018, 211–426  mathnet  crossref
    3. A. Adiloglu Nabiev, “On a Boundary Value Problem for a Polynomial Pencil of the Sturm-Liouville Equation with Spectral Parameter in Boundary Conditions”, AM, 07:18 (2016), 2418  crossref
    4. Nabiev A.A., “On a Fundamental System of Solutions of the Matrix Schrodinger Equation with a Polynomial Energy-Dependent Potential”, Math. Meth. Appl. Sci., 33:11 (2010), 1372–1383  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    5. Nabiev, AA, “Inverse scattering problem for the Schrodinger-type equation with a polynomial energy-dependent potential”, Inverse Problems, 22:6 (2006), 2055  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Nabiev, AA, “On the Jost solutions of the Schrodinger-type equations with a polynomial energy-dependent potential”, Inverse Problems, 22:1 (2006), 55  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Agamaliyev, A, “On eigenvalues of some boundary value problems for a polynomial pencil of Sturm-Liouville equation”, Applied Mathematics and Computation, 165:3 (2005), 503  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Bascanbaz-Tunca, G, “Spectral properties of a Schrodinger equation with a class of complex potentials and a general boundary condition”, Journal of Mathematical Analysis and Applications, 286:1 (2003), 207  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Guseinov, IM, “Transformation operators and asymptotic formulas for the eigenvalues of a polynomial pencil of Sturm-Liouville operators”, Siberian Mathematical Journal, 41:3 (2000), 453  mathnet  crossref  mathscinet  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:407
    Full-text PDF :217
    References:63
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025