Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 2, Pages 169–177
DOI: https://doi.org/10.4213/mzm1602
(Mi mzm1602)
 

This article is cited in 2 scientific papers (total in 2 papers)

Even permutations not representable in the form of a product of two permutations of given order

V. G. Bardakov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (198 kB) Citations (2)
References:
Abstract: The paper gives a description the permutations from the alternating group An that, for a given positive integer k4, cannot be presented as a product of two permutations each of which contains only cycles of lengths 1 and 4 in the expansion into independent cycles. We construct a set Qk such that, for each n from Qk, the group An contains a permutation not representable in the above form. We give answers to two questions of Brenner and Evans on the representability of even permutations in the form of a product of two permutations of a given order k.
Received: 27.06.1995
English version:
Mathematical Notes, 1997, Volume 62, Issue 2, Pages 141–147
DOI: https://doi.org/10.1007/BF02355902
Bibliographic databases:
UDC: 512.542.7
Language: Russian
Citation: V. G. Bardakov, “Even permutations not representable in the form of a product of two permutations of given order”, Mat. Zametki, 62:2 (1997), 169–177; Math. Notes, 62:2 (1997), 141–147
Citation in format AMSBIB
\Bibitem{Bar97}
\by V.~G.~Bardakov
\paper Even permutations not representable in the form of a product of two permutations of given order
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 2
\pages 169--177
\mathnet{http://mi.mathnet.ru/mzm1602}
\crossref{https://doi.org/10.4213/mzm1602}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619904}
\zmath{https://zbmath.org/?q=an:0922.20010}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 2
\pages 141--147
\crossref{https://doi.org/10.1007/BF02355902}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071268600021}
Linking options:
  • https://www.mathnet.ru/eng/mzm1602
  • https://doi.org/10.4213/mzm1602
  • https://www.mathnet.ru/eng/mzm/v62/i2/p169
  • This publication is cited in the following 2 articles:
    1. F. M. Malyshev, “Realizatsiya podstanovok chetnoi stepeni proizvedeniyami trekh involyutsii bez nepodvizhnykh tochek”, Matem. sb., 215:12 (2024), 148–182  mathnet  crossref
    2. V. G. Bardakov, “Computation of commutator length in free groups”, Algebra and Logic, 39:4 (2000), 224–251  mathnet  mathnet  crossref  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:460
    Full-text PDF :269
    References:58
    First page:1
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025