Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 1, Pages 3–9
DOI: https://doi.org/10.4213/mzm1582
(Mi mzm1582)
 

A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space

Yu. Ya. Agranovichab, O. T. Azizovaab

a Voronezh State Technical University
b Voronezh State University
References:
Abstract: We study the properties of the polynomial operator pencil
$$ L(\lambda)=\sum_{i=0}^n\lambda^{n-i}M_i,\qquad M_i\colon\mathscr H\to\mathscr H, \quad i=\overline{0,n}, $$
where $\mathscr H$ is a $k$-dimensional Hilbert space, and prove that the mixed discriminants $\{d_j\}_{j=0}^{nk}$, defined as the coefficients of the polynomial
$$ \det L(\lambda)=\sum_{j=0}^{nk}d_j\lambda^{nk-j}, $$
are completely determined by the joint spectrum of the family $\{M_i\}_{i=0}^n$. A generalization of Gershgorin's well-known theorem on the position of the eigenvalues of a matrix to the case of a polynomial matrix pencil is obtained.
Received: 17.05.1996
English version:
Mathematical Notes, 1997, Volume 62, Issue 1, Pages 3–7
DOI: https://doi.org/10.1007/BF02356058
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: Yu. Ya. Agranovich, O. T. Azizova, “A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space”, Mat. Zametki, 62:1 (1997), 3–9; Math. Notes, 62:1 (1997), 3–7
Citation in format AMSBIB
\Bibitem{AgrAzi97}
\by Yu.~Ya.~Agranovich, O.~T.~Azizova
\paper A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 1
\pages 3--9
\mathnet{http://mi.mathnet.ru/mzm1582}
\crossref{https://doi.org/10.4213/mzm1582}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619952}
\zmath{https://zbmath.org/?q=an:0914.47018}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 1
\pages 3--7
\crossref{https://doi.org/10.1007/BF02356058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071268600001}
Linking options:
  • https://www.mathnet.ru/eng/mzm1582
  • https://doi.org/10.4213/mzm1582
  • https://www.mathnet.ru/eng/mzm/v62/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025