Abstract:
Generally, the invariant Lagrangian manifolds (stable and unstable separatrices) asymptotic with respect to a hyperbolic torus of a Hamiltonian system do not coincide. This phenomenon is called separatrix splitting. In this paper, a symplectic invariant qualitatively describing separatrix splitting for hyperbolic tori of maximum (smaller by one than the number of degrees of freedom) dimension is constructed. The construction resembles that of the homoclinic invariant found by Lazutkin for two-dimensional symplectic maps and of Bolotin's invariant for splitting of asymptotic manifolds of a fixed point of a symplectic diffeomorphism.
Citation:
D. V. Treschev, “Separatrix splitting from the point of view of symplectic geometry”, Mat. Zametki, 61:6 (1997), 890–906; Math. Notes, 61:6 (1997), 744–757
\Bibitem{Tre97}
\by D.~V.~Treschev
\paper Separatrix splitting from the point of view of symplectic geometry
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 6
\pages 890--906
\mathnet{http://mi.mathnet.ru/mzm1573}
\crossref{https://doi.org/10.4213/mzm1573}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1629817}
\zmath{https://zbmath.org/?q=an:0915.58031}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 6
\pages 744--757
\crossref{https://doi.org/10.1007/BF02361217}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YE52200029}
Linking options:
https://www.mathnet.ru/eng/mzm1573
https://doi.org/10.4213/mzm1573
https://www.mathnet.ru/eng/mzm/v61/i6/p890
This publication is cited in the following 4 articles:
Chardard F., Bridges T.J., “Transversality of Homoclinic Orbits, the Maslov Index and the Symplectic Evans Function”, Nonlinearity, 28:1 (2015), 77–102
Stenlund M., “An Expansion of the Homoclinic Splitting Matrix for the Rapidly, Quasiperiodically, Forced Pendulum”, J. Math. Phys., 51:7 (2010), 072902
Lochak, P, “On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems”, Memoirs of the American Mathematical Society, 163:775 (2003), III
V. G. Gelfreich, V. F. Lazutkin, “Splitting of separatrices: perturbation theory and exponential smallness”, Russian Math. Surveys, 56:3 (2001), 499–558