Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 61, Issue 6, Pages 890–906
DOI: https://doi.org/10.4213/mzm1573
(Mi mzm1573)
 

This article is cited in 4 scientific papers (total in 4 papers)

Separatrix splitting from the point of view of symplectic geometry

D. V. Treschev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (434 kB) Citations (4)
References:
Abstract: Generally, the invariant Lagrangian manifolds (stable and unstable separatrices) asymptotic with respect to a hyperbolic torus of a Hamiltonian system do not coincide. This phenomenon is called separatrix splitting. In this paper, a symplectic invariant qualitatively describing separatrix splitting for hyperbolic tori of maximum (smaller by one than the number of degrees of freedom) dimension is constructed. The construction resembles that of the homoclinic invariant found by Lazutkin for two-dimensional symplectic maps and of Bolotin's invariant for splitting of asymptotic manifolds of a fixed point of a symplectic diffeomorphism.
Received: 27.06.1995
English version:
Mathematical Notes, 1997, Volume 61, Issue 6, Pages 744–757
DOI: https://doi.org/10.1007/BF02361217
Bibliographic databases:
Document Type: Article
UDC: 514.154
Language: Russian
Citation: D. V. Treschev, “Separatrix splitting from the point of view of symplectic geometry”, Mat. Zametki, 61:6 (1997), 890–906; Math. Notes, 61:6 (1997), 744–757
Citation in format AMSBIB
\Bibitem{Tre97}
\by D.~V.~Treschev
\paper Separatrix splitting from the point of view of symplectic geometry
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 6
\pages 890--906
\mathnet{http://mi.mathnet.ru/mzm1573}
\crossref{https://doi.org/10.4213/mzm1573}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1629817}
\zmath{https://zbmath.org/?q=an:0915.58031}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 6
\pages 744--757
\crossref{https://doi.org/10.1007/BF02361217}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YE52200029}
Linking options:
  • https://www.mathnet.ru/eng/mzm1573
  • https://doi.org/10.4213/mzm1573
  • https://www.mathnet.ru/eng/mzm/v61/i6/p890
  • This publication is cited in the following 4 articles:
    1. Chardard F., Bridges T.J., “Transversality of Homoclinic Orbits, the Maslov Index and the Symplectic Evans Function”, Nonlinearity, 28:1 (2015), 77–102  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    2. Stenlund M., “An Expansion of the Homoclinic Splitting Matrix for the Rapidly, Quasiperiodically, Forced Pendulum”, J. Math. Phys., 51:7 (2010), 072902  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Lochak, P, “On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems”, Memoirs of the American Mathematical Society, 163:775 (2003), III  crossref  mathscinet  isi
    4. V. G. Gelfreich, V. F. Lazutkin, “Splitting of separatrices: perturbation theory and exponential smallness”, Russian Math. Surveys, 56:3 (2001), 499–558  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:642
    Full-text PDF :307
    References:71
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025