|
A generalization of Laguerre's theorems on zeros of entire functions
S. G. Merzlyakov Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Abstract:
We prove some results generalizing the classical Laguerre theorems about the multiplicity and the number of zeros of the function
$$
\sum_{n=0}^\infty\varphi(n)\frac{f^{(n)}(0)}{n!}z^n,
$$
Some specific applications are given.
Received: 10.02.1995
Citation:
S. G. Merzlyakov, “A generalization of Laguerre's theorems on zeros of entire functions”, Mat. Zametki, 61:6 (1997), 855–863; Math. Notes, 61:6 (1997), 717–723
Linking options:
https://www.mathnet.ru/eng/mzm1569https://doi.org/10.4213/mzm1569 https://www.mathnet.ru/eng/mzm/v61/i6/p855
|
Statistics & downloads: |
Abstract page: | 425 | Full-text PDF : | 203 | References: | 80 | First page: | 1 |
|