|
Integral estimates of the solutions to the Helmholtz equation in unbounded domains
A. V. Filinovskii N. E. Bauman Moscow State Technical University
Abstract:
The following boundary value problem is studied:
$$
\begin{gathered}
\Delta v+\omega^2v=h(x),\qquad x\in\Omega\subset{\mathbb R}^n,\quad
n\ge2,\qquad-\infty<\omega<+\infty, \quad v|_\Gamma=0,\quad\Gamma=\partial\Omega,
\end{gathered}
$$
here the surface $\Gamma$ satisfies the condition $\bigl(\nu,\nabla\varphi(x)\bigr)\bigr|_\Gamma\le0$, where
$$
\varphi(x)=\sum_{j=1}^n\alpha_jx_j^2,\qquad 0<\alpha_1\le\alpha_1\le\dots\le\alpha_n=1,
$$
and $\nu$ is the outward (with respect to $\Omega$) normal to $\Gamma$.
Received: 14.07.1995
Citation:
A. V. Filinovskii, “Integral estimates of the solutions to the Helmholtz equation in unbounded domains”, Mat. Zametki, 61:5 (1997), 759–768; Math. Notes, 61:5 (1997), 635–643
Linking options:
https://www.mathnet.ru/eng/mzm1558https://doi.org/10.4213/mzm1558 https://www.mathnet.ru/eng/mzm/v61/i5/p759
|
|