Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 61, Issue 4, Pages 612–622
DOI: https://doi.org/10.4213/mzm1539
(Mi mzm1539)
 

This article is cited in 29 scientific papers (total in 29 papers)

The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation

A. M. Chebotarev

M. V. Lomonosov Moscow State University, Faculty of Physics
References:
Abstract: We prove that the solution of the Hudson–Parthasarathy quantum stochastic differential equation in the Fock space coincides with the solution of a symmetric boundary value problem for the Schrödinger equation in the interaction representation generated by the energy operator of the environment. The boundary conditions describe the jumps in the phase and the amplitude of the Fourier transforms of the Fock vector components as any of its arguments changes the sign. The corresponding Markov evolution equation (the Lindblad equation or the “master equation”) is derived from the boundary value problem for the Schrödinger equation.
Received: 11.12.1996
English version:
Mathematical Notes, 1997, Volume 61, Issue 4, Pages 510–518
DOI: https://doi.org/10.1007/BF02354995
Bibliographic databases:
UDC: 519.217
Language: Russian
Citation: A. M. Chebotarev, “The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation”, Mat. Zametki, 61:4 (1997), 612–622; Math. Notes, 61:4 (1997), 510–518
Citation in format AMSBIB
\Bibitem{Che97}
\by A.~M.~Chebotarev
\paper The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the Schr\"odinger equation
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 4
\pages 612--622
\mathnet{http://mi.mathnet.ru/mzm1539}
\crossref{https://doi.org/10.4213/mzm1539}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620012}
\zmath{https://zbmath.org/?q=an:0919.60093}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 4
\pages 510--518
\crossref{https://doi.org/10.1007/BF02354995}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR25700034}
Linking options:
  • https://www.mathnet.ru/eng/mzm1539
  • https://doi.org/10.4213/mzm1539
  • https://www.mathnet.ru/eng/mzm/v61/i4/p612
  • This publication is cited in the following 29 articles:
    1. Fernando Iemini, Darrick Chang, Jamir Marino, “Dynamics of inhomogeneous spin ensembles with all-to-all interactions: Breaking permutational invariance”, Phys. Rev. A, 109:3 (2024)  crossref
    2. Luigi Accardi, Yungang Lu, “Phenomenological models versus deductive models: The stochastic limit of quantum theory”, Int. J. Mod. Phys. A, 37:20n21 (2022)  crossref
    3. dos Prazeres L.F., Souza Leonardo da Silva, Iemini F., “Boundary Time Crystals in Collective D-Level Systems”, Phys. Rev. B, 103:18 (2021), 184308  crossref  isi
    4. Iemini F., Russomanno A., Keeling J., Schiro M., Dalmonte M., Fazio R., “Boundary Time Crystals”, Phys. Rev. Lett., 121:3 (2018), 035301  crossref  mathscinet  isi  scopus
    5. Gough J.E., James M.R., “The series product for Gaussian quantum input processes”, Rep. Math. Phys., 79:1 (2017), 111–133  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Gough J.E., Nurdin H.I., “Can Quantum Markov Evolutions Ever Be Dynamically Decoupled?”, 2017 IEEE 56Th Annual Conference on Decision and Control (Cdc), IEEE Conference on Decision and Control, IEEE, 2017  isi
    7. Gough J.E., “Non-Markovian Quantum Feedback Networks II: Controlled Flows”, J. Math. Phys., 58:6 (2017), 063517  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Nurdin H.I., Yamamoto N., “Mathematical Modeling of Linear Dynamical Quantum Systems”: Nurdin, HI Yamamoto, N, Linear Dynamical Quantum Systems: Analysis, Synthesis, and Control, Communications and Control Engineering, Springer-Verlag Berlin, 2017, 35–71  crossref  mathscinet  isi  scopus
    9. Gough J.E., “The Stratonovich formulation of quantum feedback network rules”, J. Math. Phys., 57:12 (2016), 123505  crossref  mathscinet  zmath  isi  scopus
    10. Gough J.E., “Scattering Processes in Quantum Optics”, Phys. Rev. A, 91:1 (2015), 013802  crossref  mathscinet  adsnasa  isi  scopus  scopus
    11. Gough J.E., “Characteristic Operator Functions For Quantum Input-Plant-Output Models and Coherent Control”, J. Math. Phys., 56:1 (2015), 013506  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    12. Gregoratti M., “the Hamiltonian Generating Quantum Stochastic Evolutions in the Limit From Repeated To Continuous Interactions”, Open Syst. Inf. Dyn., 22:4 (2015), 1550022  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Gough J., “the Global Versus Local Hamiltonian Description of Quantum Input-Output Theory”, Open Syst. Inf. Dyn., 22:2 (2015), 1550009  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    14. Luc Bouten, Rolf Gohm, John Gough, Hendra Nurdin, “A Trotter-Kato theorem for quantum Markov limits”, EPJ Quantum Technol., 2:1 (2015)  crossref
    15. von Waldenfels W., “The Singular Coupling Limit for a Simple Pure Number Process”, Stochastics, 84:2-3, SI (2012), 417–423  crossref  mathscinet  zmath  isi  scopus  scopus
    16. Gregoratti, M, “Dilations a la Hudson-Parthasarathy of Markov semigroups in Classical Probability”, Stochastic Analysis and Applications, 26:5 (2008), 1025  crossref  mathscinet  zmath  isi  scopus  scopus
    17. Barchielli, A, “Continual measurements in quantum mechanics and quantum stochastic calculus”, Open Quantum Systems III: Recent Developments, 1882 (2006), 207  crossref  mathscinet  isi  scopus  scopus
    18. Von Waldenfels W., “The Hamiltonian of a Simple Pure Number Process”, Quantum Probability and Infinite Dimensional Analysis, Qp-Pq Quantum Probability and White Noise Analysis, 18, eds. Schurmann M., Franz U., World Scientific Publ Co Pte Ltd, 2005, 518–524  mathscinet  isi
    19. A. M. Chebotarev, G. V. Ryzhakov, “On the Strong Resolvent Convergence of the Schrödinger Evolution to Quantum Stochastics”, Math. Notes, 74:5 (2003), 717–733  mathnet  crossref  crossref  mathscinet  zmath  isi
    20. A. M. Chebotarev, “What Is a Quantum Stochastic Differential Equation from the Point of View of Functional Analysis?”, Math. Notes, 71:3 (2002), 408–427  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:587
    Full-text PDF :261
    References:92
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025