Abstract:
We obtain necessary and sufficient conditions for the subdifferentiability and superdifferentiability (in the Dem'yanov–Rubinov sense) of the distance in an arbitrary norm from a point to a set for the finitedimensional case. The geometric structure of the subdifferential and the superdifferential is described.
Citation:
S. I. Dudov, “Subdifferentiability and superdifferentiability of distance functions”, Mat. Zametki, 61:4 (1997), 530–542; Math. Notes, 61:4 (1997), 440–450
This publication is cited in the following 21 articles:
Nath T., “Differentiability of Distance Function and the Proximinal Condition Implying Convexity”, J. Anal., 29:1 (2021), 247–261
Dolgopolik M.V., “Metric Regularity of Quasidifferentiable Mappings and Optimality Conditions For Nonsmooth Mathematical Programming Problems”, Set-Valued Var. Anal., 28:3 (2020), 427–449
S. I. Dudov, M. A. Osiptsev, “A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set”, Math. Notes, 106:5 (2019), 703–710
V. V. Abramova, S. I. Dudov, A. V. Zharkova, “Formula subdifferentsiala funktsii rasstoyaniya do vypuklogo mnozhestva v asimmetrichnom prostranstve”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 15:3 (2019), 300–309
Abramova V.V., Dudov I S., Zharkova V A., “The Formula For the Subdifferential of the Distance Function to a Convex Set in An Nonsymmetrical Space”, Vestn. St.-Peterbg. Univ. Ser. 10 Prikl. Mat. Inform. Protsessy, 15:3 (2019), 300–309
S. I. Dudov, M. A. Osiptsev, “Spherical shell of the boundary of a compact set with a minimum cross-sectional area formed by a two-dimensional plane”, Comput. Math. Math. Phys., 59:1 (2019), 160–173
S. I. Dudov, V. V. Abramova, “O vnutrennei otsenke vypuklogo tela lebegovym mnozhestvom vypukloi differentsiruemoi funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 17:3 (2017), 267–275
S. I. Dudov, M. A. Osiptsev, “Stability of best approximation of a convex body by a ball of fixed radius”, Comput. Math. Math. Phys., 56:4 (2016), 525–540
Dudov S., Osiptsev M., “Uniform Estimation of a Convex Body by a Fixed-Radius Ball”, J. Optim. Theory Appl., 171:2 (2016), 465–480
S. I. Dudov, E. A. Meshcheryakova, “On asphericity of convex body”, Russian Math. (Iz. VUZ), 59:2 (2015), 36–47
S. I. Dudov, “Systematization of problems on ball estimates of a convex compactum”, Sb. Math., 206:9 (2015), 1260–1280
S. I. Dudov, M. A. Osiptsev, “O podkhode k priblizhennomu resheniyu zadachi nailuchshego priblizheniya vypuklogo tela sharom fiksirovannogo radiusa”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:3 (2014), 267–272
S. I. Dudov, E. A. Meshcheryakova, “Method for finding an approximate solution of the asphericity problem for a convex body”, Comput. Math. Math. Phys., 53:10 (2013), 1483–1493
S. I. Dudov, E. A. Mescheryakova, “Kharakterizatsiya ustoichivosti resheniya zadachi ob asferichnosti vypuklogo kompakta”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 11:2 (2011), 20–26
S. I. Dudov, A. B. Konoplev, “Approximation of Continuous Set-Valued Maps by Constant Set-Valued Maps with Image Balls”, Math. Notes, 82:4 (2007), 469–473
S. I. Dudov, “Relations between several problems of estimating convex
compacta by balls”, Sb. Math., 198:1 (2007), 39–53
S. I. Dudov, A. S. Dudova, “On the stability of inner and outer approximations of a convex compact set by a ball”, Comput. Math. Math. Phys., 47:10 (2007), 1589–1602
V. S. Balaganskii, “Necessary Conditions for Differentiability of Distance Functions”, Math. Notes, 72:6 (2002), 752–756
S. I. Dudov, I. V. Zlatorunskaya, “Uniform estimate of a compact convex set by a ball in an arbitrary norm”, Sb. Math., 191:10 (2000), 1433–1458
Slavskii, VV, “An estimate for the quasiconformality coefficient of a domain via the curvature of its quasihyperbolic metric”, Siberian Mathematical Journal, 40:4 (1999), 801