Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 6, Pages 928–944
DOI: https://doi.org/10.4213/mzm152
(Mi mzm152)
 

This article is cited in 10 scientific papers (total in 10 papers)

Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses

G. A. Chechkin

M. V. Lomonosov Moscow State University
References:
Abstract: We study the asymptotic behavior of solutions and eigenelements of boundary-value problems with rapidly alternating type of boundary conditions in the domain $\Omega\subset\mathbb R^n$. The density, which depends on a small parameter $\varepsilon$, is of the order of $O(1)$ outside small inclusions, where the density is of the order of $O\bigl((\varepsilon \delta)^{-m}\bigr)$. These domains, i.e., concentrated masses of diameter $O(\varepsilon \delta)$, are located near the boundary at distances of the order of $O(\delta)$ from each other, where $\delta=\delta(\varepsilon )\to0$. We pose the Dirichlet condition (respectively, the Neumann condition) on the parts of the boundary $\partial\Omega$ that are tangent (respectively, lying outside) the concentrated masses. We estimate the deviations of the solutions of the limit (averaged) problems from the solutions of the original problems in the norm of the Sobolev space $W_2^1$ for $m<2$.
Received: 27.02.2003
English version:
Mathematical Notes, 2004, Volume 76, Issue 6, Pages 865–879
DOI: https://doi.org/10.1023/B:MATN.0000049687.89273.d9
Bibliographic databases:
UDC: 517.956.226
Language: Russian
Citation: G. A. Chechkin, “Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses”, Mat. Zametki, 76:6 (2004), 928–944; Math. Notes, 76:6 (2004), 865–879
Citation in format AMSBIB
\Bibitem{Che04}
\by G.~A.~Chechkin
\paper Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 6
\pages 928--944
\mathnet{http://mi.mathnet.ru/mzm152}
\crossref{https://doi.org/10.4213/mzm152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2127504}
\zmath{https://zbmath.org/?q=an:1076.35014}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 6
\pages 865--879
\crossref{https://doi.org/10.1023/B:MATN.0000049687.89273.d9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226356700029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-10344258632}
Linking options:
  • https://www.mathnet.ru/eng/mzm152
  • https://doi.org/10.4213/mzm152
  • https://www.mathnet.ru/eng/mzm/v76/i6/p928
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025