Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 6, Pages 928–944
DOI: https://doi.org/10.4213/mzm152
(Mi mzm152)
 

This article is cited in 10 scientific papers (total in 10 papers)

Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses

G. A. Chechkin

M. V. Lomonosov Moscow State University
References:
Abstract: We study the asymptotic behavior of solutions and eigenelements of boundary-value problems with rapidly alternating type of boundary conditions in the domain ΩRn. The density, which depends on a small parameter ε, is of the order of O(1) outside small inclusions, where the density is of the order of O((εδ)m). These domains, i.e., concentrated masses of diameter O(εδ), are located near the boundary at distances of the order of O(δ) from each other, where δ=δ(ε)0. We pose the Dirichlet condition (respectively, the Neumann condition) on the parts of the boundary Ω that are tangent (respectively, lying outside) the concentrated masses. We estimate the deviations of the solutions of the limit (averaged) problems from the solutions of the original problems in the norm of the Sobolev space W12 for m<2.
Received: 27.02.2003
English version:
Mathematical Notes, 2004, Volume 76, Issue 6, Pages 865–879
DOI: https://doi.org/10.1023/B:MATN.0000049687.89273.d9
Bibliographic databases:
UDC: 517.956.226
Language: Russian
Citation: G. A. Chechkin, “Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses”, Mat. Zametki, 76:6 (2004), 928–944; Math. Notes, 76:6 (2004), 865–879
Citation in format AMSBIB
\Bibitem{Che04}
\by G.~A.~Chechkin
\paper Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 6
\pages 928--944
\mathnet{http://mi.mathnet.ru/mzm152}
\crossref{https://doi.org/10.4213/mzm152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2127504}
\zmath{https://zbmath.org/?q=an:1076.35014}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 6
\pages 865--879
\crossref{https://doi.org/10.1023/B:MATN.0000049687.89273.d9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226356700029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-10344258632}
Linking options:
  • https://www.mathnet.ru/eng/mzm152
  • https://doi.org/10.4213/mzm152
  • https://www.mathnet.ru/eng/mzm/v76/i6/p928
  • This publication is cited in the following 10 articles:
    1. Yuriy Golovaty, “Membranes with thin and heavy inclusions: Asymptotics of spectra”, ASY, 130:1-2 (2022), 23  crossref
    2. Chechkin G.A. Chechkina T.P., “Random Homogenization in a Domain With Light Concentrated Masses”, Mathematics, 8:5 (2020), 788  crossref  isi  scopus
    3. Chechkin G.A., Cioranescu D., Damlamian A., Piatnitski A.L., “On Boundary Value Problem with Singular Inhomogeneity Concentrated on the Boundary”, J. Math. Pures Appl., 98:2 (2012), 115–138  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    4. G. A. Chechkin, Yu. O. Koroleva, L.-E. Persson, P. Wall, Mayer Humi, “On Spectrum of the Laplacian in a Circle Perforated along the Boundary: Application to a Friedrichs‐Type Inequality”, International Journal of Differential Equations, 2011:1 (2011)  crossref
    5. Chechkin G.A., Koroleva Yu.O., Persson L.-E., “On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure”, Journal of Inequalities and Applications, 2007, 34138  mathscinet  zmath  isi
    6. G. A. Chechkin, Yu. O. Koroleva, L.-E. Persson, “On the Precise Asymptotics of the Constant in Friedrich's Inequality for Functions Vanishing on the Part of the Boundary with Microinhomogeneous Structure”, J. Inequal. Appl., 2007 (2007), 1  crossref
    7. G. A. Chechkin, “Homogenization of solutions to problems for the Laplace operator in unbounded domains with many concentrated masses on the boundary”, J Math Sci, 139:1 (2006), 6351  crossref
    8. G. A. Chechkin, “Homogenization of a model spectral problem for the Laplace operator in a domain with many closely located “ heavy” and “intermediate heavy” concentrated masses”, J Math Sci, 135:6 (2006), 3485  crossref
    9. G. A. Chechkin, “Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case”, Izv. Math., 69:4 (2005), 805–846  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    10. G. A. Chechkin, “Asymptotic Expansions of Eigenelements of the Laplace Operator in a Domain with Many “Light” Concentrated Masses Closely Located on the Boundary. Multi-Dimensional Case”, J Math Sci, 128:5 (2005), 3263  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:613
    Full-text PDF :226
    References:90
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025