|
An additive divisor problem with a growing number of factors
N. M. Timofeev Vladimir State Pedagogical University
Abstract:
Let $\tau_k(n)$ be the number of representations of $n$ as the product of $k$ positive factors, $\tau_2(n)=\tau(n)$. The asymptotics of $\sum_{n\le x}\tau_k(n)\tau(n+1)$ for $80k^{10}(\ln\ln x)^3\le\ln x$ is shown to be uniform with respect to $k$.
Received: 15.11.1995
Citation:
N. M. Timofeev, “An additive divisor problem with a growing number of factors”, Mat. Zametki, 61:3 (1997), 391–406; Math. Notes, 61:3 (1997), 321–332
Linking options:
https://www.mathnet.ru/eng/mzm1513https://doi.org/10.4213/mzm1513 https://www.mathnet.ru/eng/mzm/v61/i3/p391
|
Statistics & downloads: |
Abstract page: | 348 | Full-text PDF : | 176 | References: | 55 | First page: | 2 |
|