Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 61, Issue 3, Pages 332–338
DOI: https://doi.org/10.4213/mzm1507
(Mi mzm1507)
 

Compositions of linear-fractional transformations

V. I. Buslaeva, S. F. Buslaevab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: We study the asymptotic behavior of the compositions $(\mathbf S_n\circ\dots\circ\mathbf S_1)(z)$ and $(\mathbf S_1\circ\dots\circ\mathbf S_n)(z)$ of linear-fractional transformations $\mathbf S_n(z)$ ($n=1,2,\dots$) whose fixed points have limits. In particular, if $\mathbf S_n(z)=\alpha_n(\beta_n+z)^{-1}$, then the sequence of compositions $(\mathbf S_1\circ\dots\circ\mathbf S_n)(z)$ at the point $z=0$ coincides with the sequence of convergents of the formal continued fraction
$$ \frac{\alpha_1}{\beta_1+\dfrac{\alpha_2}{\beta_2+\dotsb}}. $$
The result obtained can be applied in the study of convergence of formal continued fractions.
Received: 10.11.1996
English version:
Mathematical Notes, 1997, Volume 61, Issue 3, Pages 272–277
DOI: https://doi.org/10.1007/BF02355408
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. I. Buslaev, S. F. Buslaeva, “Compositions of linear-fractional transformations”, Mat. Zametki, 61:3 (1997), 332–338; Math. Notes, 61:3 (1997), 272–277
Citation in format AMSBIB
\Bibitem{BusBus97}
\by V.~I.~Buslaev, S.~F.~Buslaeva
\paper Compositions of linear-fractional transformations
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 3
\pages 332--338
\mathnet{http://mi.mathnet.ru/mzm1507}
\crossref{https://doi.org/10.4213/mzm1507}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619739}
\zmath{https://zbmath.org/?q=an:0926.30016}
\elib{https://elibrary.ru/item.asp?id=13250255}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 3
\pages 272--277
\crossref{https://doi.org/10.1007/BF02355408}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR25700002}
Linking options:
  • https://www.mathnet.ru/eng/mzm1507
  • https://doi.org/10.4213/mzm1507
  • https://www.mathnet.ru/eng/mzm/v61/i3/p332
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :219
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024