|
Compositions of linear-fractional transformations
V. I. Buslaeva, S. F. Buslaevab a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Mathematics, Ukrainian National Academy of Sciences
Abstract:
We study the asymptotic behavior of the compositions $(\mathbf S_n\circ\dots\circ\mathbf S_1)(z)$ and $(\mathbf S_1\circ\dots\circ\mathbf S_n)(z)$ of linear-fractional transformations $\mathbf S_n(z)$ ($n=1,2,\dots$) whose fixed points have limits. In particular, if $\mathbf S_n(z)=\alpha_n(\beta_n+z)^{-1}$, then the sequence of compositions $(\mathbf S_1\circ\dots\circ\mathbf S_n)(z)$ at the point $z=0$ coincides with the sequence of convergents of the formal continued fraction
$$
\frac{\alpha_1}{\beta_1+\dfrac{\alpha_2}{\beta_2+\dotsb}}.
$$
The result obtained can be applied in the study of convergence of formal continued fractions.
Received: 10.11.1996
Citation:
V. I. Buslaev, S. F. Buslaeva, “Compositions of linear-fractional transformations”, Mat. Zametki, 61:3 (1997), 332–338; Math. Notes, 61:3 (1997), 272–277
Linking options:
https://www.mathnet.ru/eng/mzm1507https://doi.org/10.4213/mzm1507 https://www.mathnet.ru/eng/mzm/v61/i3/p332
|
Statistics & downloads: |
Abstract page: | 371 | Full-text PDF : | 219 | References: | 80 | First page: | 1 |
|