Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 61, Issue 2, Pages 278–296
DOI: https://doi.org/10.4213/mzm1501
(Mi mzm1501)
 

This article is cited in 3 scientific papers (total in 3 papers)

Saddle-point method and resurgent analysis

B. Yu. Sternina, V. E. Shatalovb

a M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
References:
Abstract: The topological part of the theory of the parameter-dependent Laplace integral is known to consist of two stages. At the first stage, the integration contour is reduced to a sum of paths of steepest descent for some value of the parameter. At the second stage, this decomposition (and hence the asymptotic expansion of the integral) is continued to all other parameter values. In the present paper, the second stage is studied with the help of resurgent analysis techniques.
Received: 25.12.1996
English version:
Mathematical Notes, 1997, Volume 61, Issue 2, Pages 227–241
DOI: https://doi.org/10.1007/BF02355733
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: B. Yu. Sternin, V. E. Shatalov, “Saddle-point method and resurgent analysis”, Mat. Zametki, 61:2 (1997), 278–296; Math. Notes, 61:2 (1997), 227–241
Citation in format AMSBIB
\Bibitem{SteSha97}
\by B.~Yu.~Sternin, V.~E.~Shatalov
\paper Saddle-point method and resurgent analysis
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 2
\pages 278--296
\mathnet{http://mi.mathnet.ru/mzm1501}
\crossref{https://doi.org/10.4213/mzm1501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619947}
\zmath{https://zbmath.org/?q=an:0915.58067}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 2
\pages 227--241
\crossref{https://doi.org/10.1007/BF02355733}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XM39800026}
Linking options:
  • https://www.mathnet.ru/eng/mzm1501
  • https://doi.org/10.4213/mzm1501
  • https://www.mathnet.ru/eng/mzm/v61/i2/p278
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024