|
This article is cited in 4 scientific papers (total in 4 papers)
Measure-valued almost periodic functions
L. I. Danilov Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Abstract:
We consider Stepanov almost periodic functions $\mu\in S(\mathbb R,\mathscr M)$ ranging in the metric space $\mathscr M$ of Borel probability measures on a complete separable metric space $\mathscr U$ is equipped with the Prokhorov metric). The main result is as follows: a function $t\to\mu[\cdot;t]\in\mathscr M$, $t\in\mathbb R$, belongs to $S(\mathbb R,\mathscr M)$ if and only if for each bounded continuous function $\mathscr F\in C_b(\mathscr U,\mathbb R)$, the function $\int_{\mathscr U}\mathscr F(x)\mu[dx;\cdot]$ is Stepanov almost periodic (of order 1) and
$$
\operatorname{Mod}\mu=\sum_{\mathscr F\in C_b(\mathscr U,\mathbb R)}\operatorname{Mod}\int_{\mathscr U}\mathscr F(x)\mu[dx;\cdot].
$$
Received: 07.04.1995
Citation:
L. I. Danilov, “Measure-valued almost periodic functions”, Mat. Zametki, 61:1 (1997), 57–68; Math. Notes, 61:1 (1997), 48–57
Linking options:
https://www.mathnet.ru/eng/mzm1482https://doi.org/10.4213/mzm1482 https://www.mathnet.ru/eng/mzm/v61/i1/p57
|
Statistics & downloads: |
Abstract page: | 313 | Full-text PDF : | 181 | References: | 41 | First page: | 1 |
|