Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 61, Issue 1, Pages 18–25
DOI: https://doi.org/10.4213/mzm1478
(Mi mzm1478)
 

This article is cited in 6 scientific papers (total in 6 papers)

Pitt's theorem for the Lorentz and Orlicz sequence spaces

E. A. Jausekle, È. F. Oja

Tartu University
Full-text PDF (194 kB) Citations (6)
References:
Abstract: Let $L(X,Y)$ be the Banach space of all continuous linear operators from $X$ to $Y$, and let $K(X,Y)$ be the subspace of compact operators. Some versions of the classical Pitt theorem (if $p>q$, then $K(\ell_p,\ell_q)=L(\ell_p,\ell_q)$) for subspaces of Lorentz and Orlicz sequence spaces are established.
Received: 28.08.1995
English version:
Mathematical Notes, 1997, Volume 61, Issue 1, Pages 16–21
DOI: https://doi.org/10.1007/BF02355003
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: E. A. Jausekle, È. F. Oja, “Pitt's theorem for the Lorentz and Orlicz sequence spaces”, Mat. Zametki, 61:1 (1997), 18–25; Math. Notes, 61:1 (1997), 16–21
Citation in format AMSBIB
\Bibitem{JauOja97}
\by E.~A.~Jausekle, \`E.~F.~Oja
\paper Pitt's theorem for the Lorentz and Orlicz sequence spaces
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 1
\pages 18--25
\mathnet{http://mi.mathnet.ru/mzm1478}
\crossref{https://doi.org/10.4213/mzm1478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620065}
\zmath{https://zbmath.org/?q=an:1062.46501}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 1
\pages 16--21
\crossref{https://doi.org/10.1007/BF02355003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XM39800003}
Linking options:
  • https://www.mathnet.ru/eng/mzm1478
  • https://doi.org/10.4213/mzm1478
  • https://www.mathnet.ru/eng/mzm/v61/i1/p18
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :234
    References:49
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024