|
This article is cited in 6 scientific papers (total in 6 papers)
Pitt's theorem for the Lorentz and Orlicz sequence spaces
E. A. Jausekle, È. F. Oja Tartu University
Abstract:
Let $L(X,Y)$ be the Banach space of all continuous linear operators from $X$ to $Y$, and let $K(X,Y)$ be the subspace of compact operators. Some versions of the classical Pitt theorem (if $p>q$, then $K(\ell_p,\ell_q)=L(\ell_p,\ell_q)$) for subspaces of Lorentz and Orlicz sequence spaces are established.
Received: 28.08.1995
Citation:
E. A. Jausekle, È. F. Oja, “Pitt's theorem for the Lorentz and Orlicz sequence spaces”, Mat. Zametki, 61:1 (1997), 18–25; Math. Notes, 61:1 (1997), 16–21
Linking options:
https://www.mathnet.ru/eng/mzm1478https://doi.org/10.4213/mzm1478 https://www.mathnet.ru/eng/mzm/v61/i1/p18
|
Statistics & downloads: |
Abstract page: | 361 | Full-text PDF : | 234 | References: | 49 | First page: | 2 |
|