Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 6, Pages 932–942
DOI: https://doi.org/10.4213/mzm1472
(Mi mzm1472)
 

This article is cited in 25 scientific papers (total in 25 papers)

Inversion of integral operators with kernels discontinuous on the diagonal

A. P. Khromov

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: Conditions implying the invertibility of the integral operator
$$ Af(x)=\int_0^1A(x,t)f(t)\,dt $$
with kernel $A(x,t)$ having discontinuities of the first kind at the points $t=x$ and $t=1-x$ are found. We give explicit inversion formulas as well as applications to the problem of finding the square roots of the operator $y''(x)$ with arbitrary boundary conditions and the problem of expansion with respect to eigenfunctions.
Received: 05.01.1997
Revised: 08.09.1997
English version:
Mathematical Notes, 1998, Volume 64, Issue 6, Pages 804–813
DOI: https://doi.org/10.1007/BF02313039
Bibliographic databases:
UDC: 517.928
Language: Russian
Citation: A. P. Khromov, “Inversion of integral operators with kernels discontinuous on the diagonal”, Mat. Zametki, 64:6 (1998), 932–942; Math. Notes, 64:6 (1998), 804–813
Citation in format AMSBIB
\Bibitem{Khr98}
\by A.~P.~Khromov
\paper Inversion of integral operators with kernels discontinuous on the diagonal
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 6
\pages 932--942
\mathnet{http://mi.mathnet.ru/mzm1472}
\crossref{https://doi.org/10.4213/mzm1472}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691273}
\zmath{https://zbmath.org/?q=an:0938.45009}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 6
\pages 804--813
\crossref{https://doi.org/10.1007/BF02313039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000080436700033}
Linking options:
  • https://www.mathnet.ru/eng/mzm1472
  • https://doi.org/10.4213/mzm1472
  • https://www.mathnet.ru/eng/mzm/v64/i6/p932
  • This publication is cited in the following 25 articles:
    1. M. Sh. Burlutskaya, “Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications”, Russian Math. (Iz. VUZ), 65:5 (2021), 69–76  mathnet  crossref  crossref  isi
    2. D. V. Belova, “Ob odnoi smeshannoi zadache s involyutsiei”, Materialy Voronezhskoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 5, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 194, VINITI RAN, M., 2021, 46–54  mathnet  crossref
    3. A. P. Khromov, M. Sh. Burlutskaya, “Klassicheskoe reshenie metodom Fure smeshannykh zadach pri minimalnykh trebovaniyakh na iskhodnye dannye”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:2 (2014), 171–198  mathnet  crossref  elib
    4. V. P. Kurdyumov, A. P. Khromov, “Bazisy Rissa iz sobstvennykh i prisoedinennykh funktsii integralnykh operatorov s razryvnymi yadrami, soderzhaschimi involyutsiyu”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:4(2) (2014), 558–569  mathnet  crossref  elib
    5. M. Sh. Burlutskaya, “Teorema Zhordana–Dirikhle dlya funktsionalno-differentsialnogo operatora s involyutsiei”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 13:3 (2013), 9–14  mathnet  crossref
    6. V. P. Kurdyumov, A. P. Khromov, “Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals”, Izv. Math., 76:6 (2012), 1175–1189  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. Kurdyumov V.P., Khromov A.P., “On Riesz Bases of Eigenfunctions of Integral Operators with Kernels Discontinuous on Diagonals”, Dokl. Math., 84:1 (2011), 548–550  crossref  mathscinet  zmath  isi  elib  elib  scopus
    8. V. P. Kurdyumov, A. P. Khromov, “The Riesz bases consisting of eigen and associated functions for a functional differential operator with variable structure”, Russian Math. (Iz. VUZ), 54:2 (2010), 33–45  mathnet  crossref  mathscinet  zmath  elib
    9. G. V. Khromova, “Convergence of the Lavrent'ev method”, Comput. Math. Math. Phys., 49:6 (2009), 919–926  mathnet  crossref  zmath  isi  elib  elib
    10. V. P. Kurdyumov, “O bazisakh Rissa iz sobstvennykh funktsii integralnykh operatorov s yadrami, razryvnymi na lomanykh liniyakh”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 9:4(1) (2009), 28–35  mathnet  crossref  elib
    11. A. P. Khromov, L. P. Kuvardina, “On the equiconvergence of expansions in eigen- and associated functions of an integral operator with involution”, Russian Math. (Iz. VUZ), 52:5 (2008), 58–66  mathnet  crossref  mathscinet  zmath  elib
    12. Kornev, VV, “Operator Integration with an Involution in the Upper Limit of Integration”, Doklady Mathematics, 78:2 (2008), 733  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. Kurdyumov, VP, “Riesz bases formed by root functions of a functional-differential equation with a reflection operator”, Differential Equations, 44:2 (2008), 203  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    14. V. V. Kornev, A. P. Khromov, “Operator integrirovaniya s involyutsiei, imeyuschei stepennuyu osobennost”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 8:4 (2008), 18–33  mathnet  crossref  elib
    15. V. V. Kornev, “Absolute and Uniform Convergence of Eigenfunction Expansions of Integral Operators with Kernels Admitting Derivative Discontinuities on the Diagonals”, Math. Notes, 81:5 (2007), 638–648  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    16. Burlutskaya, MS, “On the equiconvergence of eigenfunction expansions for a first-order functional-differential operator on a cycle-containing graph with two edges”, Differential Equations, 43:12 (2007), 1638  crossref  mathscinet  zmath  isi  scopus  scopus
    17. Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “A functional-differential operator with involution”, Doklady Mathematics, 75:3 (2007), 399–402  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    18. M. Sh. Burlutskaya, A. P. Khromov, “O skhodimosti srednikh Rissa razlozhenii po sobstvennym funktsiyam funktsionalno-differentsialnogo operatora na grafe-tsikle”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 7:1 (2007), 3–8  mathnet  crossref
    19. A. P. Khromov, “On an analog of the Jordan-Dirichlet theorem for eigenfunction expansions of one differential-difference operator with an integral boundary condition”, J Math Sci, 144:4 (2007), 4267  crossref
    20. A. P. Khromov, “On equiconvergence of spectral expansions of integral operators”, J Math Sci, 144:4 (2007), 4277  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:707
    Full-text PDF :333
    References:66
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025