Abstract:
Conditions implying the invertibility of the integral operator
$$
Af(x)=\int_0^1A(x,t)f(t)\,dt
$$
with kernel $A(x,t)$ having discontinuities of the first kind at the points $t=x$ and $t=1-x$ are found. We give explicit inversion formulas as well as applications to the problem of finding the square roots of the operator $y''(x)$ with arbitrary boundary conditions and the problem of expansion with respect to eigenfunctions.
Citation:
A. P. Khromov, “Inversion of integral operators with kernels discontinuous on the diagonal”, Mat. Zametki, 64:6 (1998), 932–942; Math. Notes, 64:6 (1998), 804–813
\Bibitem{Khr98}
\by A.~P.~Khromov
\paper Inversion of integral operators with kernels discontinuous on the diagonal
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 6
\pages 932--942
\mathnet{http://mi.mathnet.ru/mzm1472}
\crossref{https://doi.org/10.4213/mzm1472}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691273}
\zmath{https://zbmath.org/?q=an:0938.45009}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 6
\pages 804--813
\crossref{https://doi.org/10.1007/BF02313039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000080436700033}
Linking options:
https://www.mathnet.ru/eng/mzm1472
https://doi.org/10.4213/mzm1472
https://www.mathnet.ru/eng/mzm/v64/i6/p932
This publication is cited in the following 25 articles:
M. Sh. Burlutskaya, “Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications”, Russian Math. (Iz. VUZ), 65:5 (2021), 69–76
D. V. Belova, “Ob odnoi smeshannoi zadache s involyutsiei”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 5, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 194, VINITI RAN, M., 2021, 46–54
A. P. Khromov, M. Sh. Burlutskaya, “Klassicheskoe reshenie metodom Fure smeshannykh zadach pri minimalnykh trebovaniyakh na iskhodnye dannye”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:2 (2014), 171–198
V. P. Kurdyumov, A. P. Khromov, “Bazisy Rissa iz sobstvennykh i prisoedinennykh funktsii integralnykh operatorov s razryvnymi yadrami, soderzhaschimi involyutsiyu”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:4(2) (2014), 558–569
V. P. Kurdyumov, A. P. Khromov, “Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals”, Izv. Math., 76:6 (2012), 1175–1189
Kurdyumov V.P., Khromov A.P., “On Riesz Bases of Eigenfunctions of Integral Operators with Kernels Discontinuous on Diagonals”, Dokl. Math., 84:1 (2011), 548–550
V. P. Kurdyumov, A. P. Khromov, “The Riesz bases consisting of eigen and associated functions for a functional differential operator with variable structure”, Russian Math. (Iz. VUZ), 54:2 (2010), 33–45
G. V. Khromova, “Convergence of the Lavrent'ev method”, Comput. Math. Math. Phys., 49:6 (2009), 919–926
V. P. Kurdyumov, “O bazisakh Rissa iz sobstvennykh funktsii integralnykh operatorov s yadrami, razryvnymi na lomanykh liniyakh”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 9:4(1) (2009), 28–35
A. P. Khromov, L. P. Kuvardina, “On the equiconvergence of expansions in eigen- and associated functions of an integral operator with involution”, Russian Math. (Iz. VUZ), 52:5 (2008), 58–66
Kornev, VV, “Operator Integration with an Involution in the Upper Limit of Integration”, Doklady Mathematics, 78:2 (2008), 733
Kurdyumov, VP, “Riesz bases formed by root functions of a functional-differential equation with a reflection operator”, Differential Equations, 44:2 (2008), 203
V. V. Kornev, A. P. Khromov, “Operator integrirovaniya s involyutsiei, imeyuschei stepennuyu osobennost”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 8:4 (2008), 18–33
V. V. Kornev, “Absolute and Uniform Convergence of Eigenfunction Expansions of Integral Operators with Kernels Admitting Derivative Discontinuities on the Diagonals”, Math. Notes, 81:5 (2007), 638–648
Burlutskaya, MS, “On the equiconvergence of eigenfunction expansions for a first-order functional-differential operator on a cycle-containing graph with two edges”, Differential Equations, 43:12 (2007), 1638
Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “A functional-differential operator with involution”, Doklady Mathematics, 75:3 (2007), 399–402
M. Sh. Burlutskaya, A. P. Khromov, “O skhodimosti srednikh Rissa razlozhenii po sobstvennym funktsiyam funktsionalno-differentsialnogo
operatora na grafe-tsikle”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 7:1 (2007), 3–8
A. P. Khromov, “On an analog of the Jordan-Dirichlet theorem for eigenfunction expansions of one differential-difference operator with an integral boundary condition”, J Math Sci, 144:4 (2007), 4267
A. P. Khromov, “On equiconvergence of spectral expansions of integral operators”, J Math Sci, 144:4 (2007), 4277