Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 6, Pages 836–861
DOI: https://doi.org/10.4213/mzm14509
(Mi mzm14509)
 

Applying Lauricella's function to construct conformal mapping of polygons' exteriors

S. I. Bezrodnykh

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
References:
Abstract: We consider the problem of calculating the parameters of the Christoffel–Schwarz integral implementing a conformal mapping of the upper half-plane onto a polygon containing an interior point at infinity. The paper proposes a solution to this problem based on new formulas for the analytic continuation of the Lauricella function $F_D^{(N)}$– the hypergeometric function of $N$ complex variables. A set of new identities and continuation formulas for this function is obtained, aimed at calculating the parameters of the Christoffel–Schwarz integral in the “crowding” situation. Representations via the Lauricella function are found for the Christoffel–Schwarz integral that are convenient for calculating such a conformal mapping.
Keywords: Christoffel–Schwarz integral, Lauricella and Horn hypergeometric functions, Euler-type integrals, analytic continuation, conformal mapping of polygons.
Funding agency Grant number
Russian Science Foundation 24-11-00372
This work was financially supported by the Russian Science Foundation, project no. 24-11-00372, https://rscf.ru/en/project/24-11-00372/.
Received: 19.07.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 6, Pages 1183–1203
DOI: https://doi.org/10.1134/S0001434624110282
Document Type: Article
UDC: 517
Language: Russian
Citation: S. I. Bezrodnykh, “Applying Lauricella's function to construct conformal mapping of polygons' exteriors”, Mat. Zametki, 116:6 (2024), 836–861; Math. Notes, 116:6 (2024), 1183–1203
Citation in format AMSBIB
\Bibitem{Bez24}
\by S.~I.~Bezrodnykh
\paper Applying Lauricella's function to construct conformal mapping of polygons' exteriors
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 6
\pages 836--861
\mathnet{http://mi.mathnet.ru/mzm14509}
\crossref{https://doi.org/10.4213/mzm14509}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 6
\pages 1183--1203
\crossref{https://doi.org/10.1134/S0001434624110282}
Linking options:
  • https://www.mathnet.ru/eng/mzm14509
  • https://doi.org/10.4213/mzm14509
  • https://www.mathnet.ru/eng/mzm/v116/i6/p836
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :2
    Russian version HTML:4
    References:17
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024