Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 6, Pages 881–897
DOI: https://doi.org/10.4213/mzm14497
(Mi mzm14497)
 

Maslov tunnel asymptotics and random walks on a discrete-time lattice

V. G. Danilov, S. O. Mikhailova

National Research University Higher School of Economics, Moscow
References:
Abstract: In this paper, a method for solving parabolic problems on a lattice will be presented using random walks as an example. Due to the stochastic properties of random walks, previously obtained interpolation methods for solving hyperbolic problems (Fourier transform, V. A. Kotelnikov's theorem) cannot be applied on lattices. In this paper, a formal asymptotics of the fundamental solution of the Cauchy problem and boundary value problems for a parabolic random walk on a lattice is constructed based on the representation of the Dirac delta function as a Gaussian exponential and a special partition of unity. This solution satisfies the conditions of nonnegativity and norm conservation. The obtained solution exists in the entire attainability domain of the random walk in the case of a finite initial condition. In this case, the asymptotics of the solution of the Cauchy problem corresponds to a noncompact Lagrangian manifold such that the projection of its singularity coincides with the boundary of the attainability domain.
Keywords: formal asymptotics of the fundamental solution, random walks, parabolic problem on a lattice.
Funding agency Grant number
HSE Basic Research Program
This study was implemented in the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE University).
Received: 18.07.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 6, Pages 1249–1263
DOI: https://doi.org/10.1134/S0001434624110324
Document Type: Article
UDC: 517.958+517.955.8
Language: Russian
Citation: V. G. Danilov, S. O. Mikhailova, “Maslov tunnel asymptotics and random walks on a discrete-time lattice”, Mat. Zametki, 116:6 (2024), 881–897; Math. Notes, 116:6 (2024), 1249–1263
Citation in format AMSBIB
\Bibitem{DanMik24}
\by V.~G.~Danilov, S.~O.~Mikhailova
\paper Maslov tunnel asymptotics and random walks on a discrete-time lattice
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 6
\pages 881--897
\mathnet{http://mi.mathnet.ru/mzm14497}
\crossref{https://doi.org/10.4213/mzm14497}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 6
\pages 1249--1263
\crossref{https://doi.org/10.1134/S0001434624110324}
Linking options:
  • https://www.mathnet.ru/eng/mzm14497
  • https://doi.org/10.4213/mzm14497
  • https://www.mathnet.ru/eng/mzm/v116/i6/p881
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:53
    References:8
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024