Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 5, Pages 701–712
DOI: https://doi.org/10.4213/mzm1446
(Mi mzm1446)
 

This article is cited in 5 scientific papers (total in 5 papers)

Borel resolvability of compact spaces and their subspaces

V. I. Malykhin

S. Ordzhonikidze State Academy of Management
Full-text PDF (238 kB) Citations (5)
References:
Abstract: The presence of disjoint dense (Borel) subsets in Tychonoff cubes, Borel subspaces of Tychonoff cubes, and dyadic compacta is examined. Several problems are stated.
Received: 04.07.1996
Revised: 03.03.1998
English version:
Mathematical Notes, 1998, Volume 64, Issue 5, Pages 607–615
DOI: https://doi.org/10.1007/BF02316285
Bibliographic databases:
UDC: 513.83
Language: Russian
Citation: V. I. Malykhin, “Borel resolvability of compact spaces and their subspaces”, Mat. Zametki, 64:5 (1998), 701–712; Math. Notes, 64:5 (1998), 607–615
Citation in format AMSBIB
\Bibitem{Mal98}
\by V.~I.~Malykhin
\paper Borel resolvability of compact spaces and their subspaces
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 5
\pages 701--712
\mathnet{http://mi.mathnet.ru/mzm1446}
\crossref{https://doi.org/10.4213/mzm1446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691212}
\zmath{https://zbmath.org/?q=an:0936.54039}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 5
\pages 607--615
\crossref{https://doi.org/10.1007/BF02316285}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000080436700007}
Linking options:
  • https://www.mathnet.ru/eng/mzm1446
  • https://doi.org/10.4213/mzm1446
  • https://www.mathnet.ru/eng/mzm/v64/i5/p701
  • This publication is cited in the following 5 articles:
    1. A. E. Lipin, “On resolvability, connectedness and pseudocompactness”, Acta Math. Hungar., 2024  crossref
    2. A. E. Lipin, “Resolvability and complete accumulation points”, Acta Math. Hungar., 170:2 (2023), 661  crossref
    3. M. A. Filatova, A. V. Osipov, “On resolvability of Lindelöf generated spaces”, Sib. elektron. matem. izv., 15 (2018), 1260–1270  mathnet  crossref
    4. Juhasz I., Soukup L., Szentmiklossy Z., “Regular Spaces of Small Extent Are Omega-Resolvable”, Fundam. Math., 228:1 (2015), 27–46  crossref  mathscinet  zmath  isi  elib
    5. M. A. Filatova, “Resolvability of Lindelöf spaces”, J. Math. Sci., 146:1 (2007), 5603–5607  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :205
    References:60
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025