Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 5, Pages 759–765
DOI: https://doi.org/10.4213/mzm14388
(Mi mzm14388)
 

On global solutions of second-order quasilinear elliptic inequalities

A. A. Kon'kova, A. E. Shishkovb

a Lomonosov Moscow State University
b Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow
References:
Abstract: Differential inequalities of the form
$$ - \operatorname{div} A (x, \nabla u)\geqslant f(u)\quad \text{in}\quad {\mathbb R}^n $$
are considered, where $n \geqslant 2$ and $A$ is a Carathéodory function that satisfies the uniform ellipticity conditions
$$ C_1|\xi|^p\leqslant\xi A (x, \xi), \qquad |A (x, \xi)| \leqslant C_2 |\xi|^{p-1}, \qquad C_1, C_2 > 0, \qquad p > 1, $$
for almost every $x \in {\mathbb R}^n$ and all $\xi \in {\mathbb R}^n$. For nonnegative solutions of these inequalities, precise conditions for the absence of nontrivial solutions are obtained.
Keywords: absence of solutions, nonlinear differential inequality.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
Russian Science Foundation 20-11-20272
23-11-00056
The research of the first author was supported in part by the Ministry of Science and Higher Education of the Russian Federation as a part of the program of the Moscow Center for Fundamental and Applied Mathematics, grant no. 075-15-2022-284 (critical nonlinearity exponents) and by the Russian Science Foundation, grant no. 20-11-20272, https://rscf.ru/en/project/20-11-20272/ (estimates for global solutions), and that of the second author was supported by the Russian Science Foundation, project no. 23-11-00056, https://rscf.ru/en/project/23-11-00056/ (asymptotic properties of solutions).
Received: 29.05.2024
Revised: 19.06.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 5, Pages 1014–1019
DOI: https://doi.org/10.1134/S0001434624110130
Document Type: Article
UDC: 517.954
Language: Russian
Citation: A. A. Kon'kov, A. E. Shishkov, “On global solutions of second-order quasilinear elliptic inequalities”, Mat. Zametki, 116:5 (2024), 759–765; Math. Notes, 116:5 (2024), 1014–1019
Citation in format AMSBIB
\Bibitem{KonShi24}
\by A.~A.~Kon'kov, A.~E.~Shishkov
\paper On global solutions of second-order quasilinear elliptic inequalities
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 5
\pages 759--765
\mathnet{http://mi.mathnet.ru/mzm14388}
\crossref{https://doi.org/10.4213/mzm14388}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 5
\pages 1014--1019
\crossref{https://doi.org/10.1134/S0001434624110130}
Linking options:
  • https://www.mathnet.ru/eng/mzm14388
  • https://doi.org/10.4213/mzm14388
  • https://www.mathnet.ru/eng/mzm/v116/i5/p759
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025