Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 2, paper published in the English version journal (Mi mzm14317)  

Papers published in the English version of the journal

Boundedness of solutions of the Ginzburg–Landau system involving a subelliptic operator

Y. T. N. Haa, A. T. Duonga, N. Bietb

a School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Vietnam
b Department of Education and Training of Phu Tho Province, Viet Tri, Phu Tho, Vietnam
Abstract: The aim of this paper is to study the boundedness of solutions of the Ginzburg–Landau system
\begin{equation*} \begin{cases} \partial_t u -\Delta_\lambda u = u - u^3 - \gamma uv^2 & \text{in } \mathbb{R}\times \mathbb{R}^N, \\ \partial_t v -\Delta_\lambda v = v - v^3 - \gamma u^2v & \text{in }\mathbb{R}\times \mathbb{R}^N, \end{cases} \end{equation*}
where $\gamma>0$ and $\Delta_{\lambda}$ is the subelliptic operator
\begin{equation*} \sum_{i=1}^N \partial_{x_i}(\lambda_i^2\partial_{x_i}). \end{equation*}
In the stationary case, where the solutions are independent of the time variable, our result can be seen as an extension of some results in [A. Farina, B. Sciunzi, and N. Soave, Commun. Contemp. Math. 22 (5), Article no. 1950044 (2020)] from the Laplace operator to the subelliptic operator $\Delta_{\lambda}$.
Keywords: Qualitative property, Ginzburg–Landau system, parabolic system, elliptic system, boundedness of solutions, subelliptic operator.
Received: 21.03.2024
Revised: 21.03.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 2, Pages 350–355
DOI: https://doi.org/10.1134/S0001434624070289
Bibliographic databases:
Document Type: Article
MSC: 35K40, 35B53, 35J60
Language: English
Citation: Y. T. N. Ha, A. T. Duong, N. Biet, “Boundedness of solutions of the Ginzburg–Landau system involving a subelliptic operator”, Math. Notes, 116:2 (2024), 350–355
Citation in format AMSBIB
\Bibitem{HaDuoBie24}
\by Y.~T.~N.~Ha, A.~T.~Duong, N.~Biet
\paper Boundedness of solutions of the Ginzburg--Landau system involving a subelliptic operator
\jour Math. Notes
\yr 2024
\vol 116
\issue 2
\pages 350--355
\mathnet{http://mi.mathnet.ru/mzm14317}
\crossref{https://doi.org/10.1134/S0001434624070289}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207219424}
Linking options:
  • https://www.mathnet.ru/eng/mzm14317
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024