Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 2, Pages 195–211
DOI: https://doi.org/10.4213/mzm14304
(Mi mzm14304)
 

Weakly dissipative linear dynamical systems and a quadratic Keldysh pencil

V. I. Voytitskyab

a Nikol'skii Mathematical Institute of Peoples' Friendship University of Russia, Moscow
b Russian State Agrarian University - Moscow Agricultural Academy after K.A. Timiryazev
References:
Abstract: In a Hilbert space, we consider a second-order differential equation with unbounded operator coefficients modeling small motions of a dynamical system with weak energy dissipation. A theorem on the existence and uniqueness of a classical solution is stated. The corresponding spectral problem is reduced to the study of an elliptic quadratic pencil, which, in turn, can be reduced to a “modified” Keldysh pencil. Depending on the asymptotics of the spectrum of the main operator of the problem (the potential energy operator) and the subordination coefficient of the energy dissipation operator, we prove that the corresponding root function system of the linearized problem is a $2$-fold Bari basis, Riesz basis, or Abel–Lidskii basis with parentheses. By way of application, we consider the problem on a quadratic Sturm–Liouville pencil as well as the general spectral problem generated by the problem on small motions of a system of hinged pendulums with cavities completely or partly filled with ideal incompressible fluids and with friction in the hinges.
Keywords: differential operator equation, energy dissipation, operator pencil, discrete spectrum, basis property, asymptotics of eigenvalues.
Received: 17.03.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 2, Pages 209–222
DOI: https://doi.org/10.1134/S0001434624070162
Bibliographic databases:
Document Type: Article
UDC: 517.984+517.9835
MSC: 47A10, 35J57
Language: Russian
Citation: V. I. Voytitsky, “Weakly dissipative linear dynamical systems and a quadratic Keldysh pencil”, Mat. Zametki, 116:2 (2024), 195–211; Math. Notes, 116:2 (2024), 209–222
Citation in format AMSBIB
\Bibitem{Voy24}
\by V.~I.~Voytitsky
\paper Weakly dissipative linear dynamical systems and a~quadratic Keldysh pencil
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 2
\pages 195--211
\mathnet{http://mi.mathnet.ru/mzm14304}
\crossref{https://doi.org/10.4213/mzm14304}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 2
\pages 209--222
\crossref{https://doi.org/10.1134/S0001434624070162}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207218702}
Linking options:
  • https://www.mathnet.ru/eng/mzm14304
  • https://doi.org/10.4213/mzm14304
  • https://www.mathnet.ru/eng/mzm/v116/i2/p195
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024