Abstract:
Let $M$ be a $W^{\ast}$-algebra acting on a separable complex Hilbert space $H$. We show that the inclusion of $M$ into $\mathscr{B}(H)$ factors through an $\mathfrak{L}_{\infty}$-space only if $M$ is a finite type $\mathrm{I}$ algebra.
Keywords:Dunford–Pettis property, von Neumann algebra.
Citation:
V. A. Melnikov, “On $\mathfrak{L}_{\infty}$-liftings of the Gelfand–Naimark morphism”, Mat. Zametki, 115:6 (2024), 914–918; Math. Notes, 115:6 (2024), 983–986